\frametitle{Preamble}

In this preamble, we load the gstlearn library.


\frametitle{Main Classes}

This is the (non-exhaustive) list of classes (of objects) in gstlearn:


\frametitle{Loading CSV File}

You should download the ASCII file called Scotland_Temperatures.csv (organized as a CSV file) and store it on your disk in the current working directory. In this example, the file (called filecsv) is provided as a CSV format file. We load it into a data frame (names datcsv) using the relevant R-command.

dlfile = "https://soft.minesparis.psl.eu/gstlearn/data/Scotland/Scotland_Temperatures.csv"
filecsv = "Scotland_Temperatures.csv"
download.file(dlfile, filecsv)
datcsv = read.csv(filecsv)

We can check the contents of the data frame (by simply typing its name) and see that it contains four columns (respectively called Longitude, Latitude, Elevation, January_temp) and 236 rows (header line excluded).

Note that the last column contains several values called MISS: this corresponds to the absence of information.


\frametitle{Creating Db File}

We now want to load this information in order to obtain a data base of the gstlearn package (or Db) that will be called dat. This operation can be performed directly by reading the CSV file again and load it directly into a Db.

Note that we introduce a CSVformat description where we can specifiy the specificities of the file to be read, in particular we can tell how to spell the conventional value used for coding missing information.

csv = CSVformat_create(flagHeader=TRUE, naString = "MISS")
dat = Db_createFromCSV(filecsv, csv=csv)
dat
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 0
## Number of Columns            = 5
## Maximum Number of UIDs       = 5
## Total number of samples      = 236
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = NA
## Column = 2 - Name = Latitude - Locator = NA
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = NA

\frametitle{Importing Db File}

A last solution is to import it directly from the set of demonstration files (provided together with the package and called fileNF) and stored in a specific format (Neutral file).

These NF (or neutral file) are currently used for serialization of the gstlearn objects. They will probably be replaced in the future by a facility backuping the whole workspace in one step.

Note that the contents of the Db is slightly different from the result obtained when reading from CSV. Essentially, some variables have a Locator field defined, some do not. This concept will be described later in this chapter and the difference can be ignored.

dlfile = "https://soft.minesparis.psl.eu/gstlearn/data/Scotland/Scotland_Temperatures.NF"
fileNF = "Scotland_Temperatures.NF"
download.file(dlfile, fileNF)
dat = Db_createFromNF(fileNF)
dat
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 2
## Number of Columns            = 5
## Maximum Number of UIDs       = 5
## Total number of samples      = 236
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1

\frametitle{Db class}

Typing the name of the object automatically launches the display action. It is equivalent to simply typing the name of the object (at the end of a chunk in a RMarkdown file).

dat$display()
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 2
## Number of Columns            = 5
## Maximum Number of UIDs       = 5
## Total number of samples      = 236
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1
## NULL

There, we can check that the 4 initial fields have been considered, in addition to a firs one, automatically called rank, for a total of 5 columns (the information regarding UID will not be addressed in this chapter).

We can check that each field is assigned to a numbered Column. Finally the total number of samples is 236 as expected.

In addition, some interesting information tells you that this data base corresponds to a 2-D dimension one: this will be described later together with the use of the Locator information.


\frametitle{Db class}

To get more information on the contents of the Db, it is possible to use the DbStringFormat option and to use use through the display method. There are several ways to specify the type of information that is searched for (see the documentation of this class for details): typically here we ask for statistics but restrict them to a list of variables

dbfmt = DbStringFormat_createFromFlags(flag_stats=TRUE, names=c("Elevation", "January_temp"))
dat$display(dbfmt)
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 2
## Number of Columns            = 5
## Maximum Number of UIDs       = 5
## Total number of samples      = 236
## 
## Data Base Statistics
## --------------------
## 4 - Name Elevation - Locator NA
##  Nb of data          =        236
##  Nb of active values =        236
##  Minimum value       =      2.000
##  Maximum value       =    800.000
##  Mean value          =    146.441
##  Standard Deviation  =    165.138
##  Variance            =  27270.713
## 5 - Name January_temp - Locator z1
##  Nb of data          =        236
##  Nb of active values =        151
##  Minimum value       =      0.600
##  Maximum value       =      5.200
##  Mean value          =      2.815
##  Standard Deviation  =      1.010
##  Variance            =      1.020
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1
## NULL

\frametitle{Assessors for Db class}

We can also consider the data base as a data frame and use the [ ] assessors. The following usage show the whole contents of the data base.

dat[]
##     rank Longitude Latitude Elevation January_temp
## 0      1     372.1    658.9       255          1.7
## 1      2     303.5    665.9       125          2.0
## 2      3     218.4    597.9         8          4.6
## 3      4     245.0    955.0        90           NA
## 4      5     326.8    691.2        32          3.1
## 5      6     247.8    664.2        32          3.5
## 6      7     299.0    967.4        21          3.4
## 7      8     319.9    675.7        61          3.0
## 8      9     171.6    620.8        12          4.9
## 9     10     342.2    731.3        45          2.9
## 10    11     365.0    865.0        37           NA
## 11    12     323.5    602.6       242          1.3
## 12    13     275.0    835.0       295           NA
## 13    14     146.4    933.2        15          4.0
## 14    15     352.1    648.8       183          1.7
## 15    16     215.0    745.0       620           NA
## 16    17     232.9    855.1       107          1.9
## 17    18     364.9    741.1        29          3.3
## 18    19     255.4    578.0       178          2.3
## 19    20     335.0    655.0       313           NA
## 20    21     374.3    648.4       152          2.3
## 21    22     212.7    569.3       166          2.6
## 22    23     305.0    625.0       620           NA
## 23    24     203.8    849.2        67          2.7
## 24    25     315.9    673.9        35          2.9
## 25    26     215.0    835.0       665           NA
## 26    27     272.5    688.2       335          1.0
## 27    28     318.8    830.3       215          1.2
## 28    29     215.0    565.0       145           NA
## 29    30     248.0    666.7         5          3.1
## 30    31     245.0    745.0       630           NA
## 31    32     236.9    626.1        16          3.7
## 32    33     279.9    589.0       146          2.1
## 33    34     270.2    739.4       130          2.5
## 34    35     351.3    673.6        49          2.9
## 35    36     395.0    805.0        30           NA
## 36    37     245.0    685.0        60           NA
## 37    38     275.0    625.0       442           NA
## 38    39     460.7   1208.9        24          3.1
## 39    40     323.2    659.5       185          2.1
## 40    41     245.0    775.0       780           NA
## 41    42     283.0    960.9        38          2.7
## 42    43     251.1    660.1        30          3.0
## 43    44     185.0    805.0       210           NA
## 44    45     305.0    805.0       760           NA
## 45    46     291.8    711.2       152          1.8
## 46    47     335.0    625.0       370           NA
## 47    48     275.0    775.0       433           NA
## 48    49     263.4    708.0       107          2.2
## 49    50     321.3    869.9       125          2.9
## 50    51     240.6    565.7        46          3.3
## 51    52     275.0    685.0       229           NA
## 52    53      99.9    744.6         9          5.0
## 53    54     315.0    652.0       244          1.6
## 54    55     245.0    565.0        46           NA
## 55    56     317.5    743.8        70          2.1
## 56    57     372.4    754.4        30          3.2
## 57    58     225.9    974.7       112          4.2
## 58    59     299.7    622.6       295          1.1
## 59    60     245.0    625.0        95           NA
## 60    61     271.4    664.3        66          2.7
## 61    62     315.2    791.4       339          0.6
## 62    63     336.4    952.2        36          3.2
## 63    64     335.0    835.0       310           NA
## 64    65     310.1    723.9        23          2.5
## 65    66     347.9    636.7       198          2.0
## 66    67     230.3    683.6        89          2.8
## 67    68     305.0    685.0        45           NA
## 68    69     335.0    859.5        32          3.2
## 69    70     350.3    716.7        18          3.2
## 70    71      78.2    855.5         5          4.5
## 71    72     324.5    675.5        26          3.3
## 72    73     208.3    664.9        43          4.1
## 73    74     324.4    663.6       184          2.2
## 74    75     312.5    703.3       116          1.7
## 75    76     180.0    827.6         4          4.3
## 76    77     142.5    679.1        20          5.2
## 77    78     365.0    835.0       305           NA
## 78    79     344.8    780.0       258          1.6
## 79    80     155.3    745.3        37          3.9
## 80    81     322.9    863.0        15          3.1
## 81    82     185.0    685.0        15           NA
## 82    83     141.8    850.1        67          3.5
## 83    84     217.5    654.4         5          4.7
## 84    85     274.9    855.7         5          3.6
## 85    86     275.0    955.0       198           NA
## 86    87     376.6    839.2        55          1.8
## 87    88     338.8    748.6        61          1.7
## 88    89     245.0    715.0       488           NA
## 89    90     215.0    685.0       152           NA
## 90    91     275.0    865.0        70           NA
## 91    92     455.0   1165.0         2           NA
## 92    93     245.0    895.0       430           NA
## 93    94     245.0    535.0        48           NA
## 94    95     185.0    865.0       325           NA
## 95    96     358.7    609.7       155          1.7
## 96    97     245.0    925.0       210           NA
## 97    98     318.5    673.5        61          3.0
## 98    99     138.3    695.9        35          4.6
## 99   100     207.4    913.4        14          3.9
## 100  101     250.6    666.3         8          3.2
## 101  102     297.4    646.4       208          1.3
## 102  103     275.0    925.0       250           NA
## 103  104     155.0    745.0        30           NA
## 104  105     245.0    865.0       520           NA
## 105  106     173.9    891.8        16          4.7
## 106  107     335.0    805.0       540           NA
## 107  108     373.6    634.6        34          2.6
## 108  109     291.8    759.9        94          2.0
## 109  110     203.5    620.9        18          4.7
## 110  111     259.3    756.2       232          1.2
## 111  112     346.8    720.9        10          2.9
## 112  113     298.6    809.5       341          0.9
## 113  114     387.5    786.4         4          3.0
## 114  115     305.0    955.0       100           NA
## 115  116     181.3    664.3        12          3.6
## 116  117     303.4    828.3       220          0.7
## 117  118     245.2    564.6        15          3.3
## 118  119     365.0    805.0       312           NA
## 119  120     215.0    715.0       335           NA
## 120  121     305.0    775.0       800           NA
## 121  122     275.1    560.7        73          2.7
## 122  123     215.0    895.0       160           NA
## 123  124     391.5    804.2        52          2.7
## 124  125     387.7    812.7        65          2.4
## 125  126     125.0    925.0        50           NA
## 126  127     335.0    715.0        40           NA
## 127  128     284.1    717.7       113          2.0
## 128  129     309.0    718.5        41          2.6
## 129  130     305.0    835.0       305           NA
## 130  131     186.1    881.8         6          4.3
## 131  132     185.0    775.0       130           NA
## 132  133     275.0    595.0       265           NA
## 133  134     215.0    865.0       280           NA
## 134  135     215.0    655.0        15           NA
## 135  136     290.2    682.0         3          3.1
## 136  137     409.3    858.2        26          3.4
## 137  138     355.5    735.2        27          3.1
## 138  139     377.9    820.4        54          2.0
## 139  140     287.9    623.9       274          1.3
## 140  141     352.3    832.3       146          1.9
## 141  142     335.0    595.0       375           NA
## 142  143     257.2    662.7        23          3.3
## 143  144     238.1    809.1        21          2.7
## 144  145     140.2    799.6         5          4.4
## 145  146     215.0    775.0       280           NA
## 146  147     445.4   1139.8        82          3.0
## 147  148     285.6    803.8       250          0.9
## 148  149     326.0    794.6       283          0.7
## 149  150     395.0    865.0        45           NA
## 150  151     232.1    709.8        12          3.6
## 151  152     185.0    715.0       130           NA
## 152  153     294.7    887.5        18          3.5
## 153  154     335.0    865.0         2           NA
## 154  155     369.2    795.9        94          2.4
## 155  156     291.3    808.2       305          1.0
## 156  157     275.0    655.0        26           NA
## 157  158     237.9    623.3        48          3.6
## 158  159     215.0    805.0       230           NA
## 159  160     245.0    805.0       760           NA
## 160  161     275.0    715.0       457           NA
## 161  162     275.0    565.0        64           NA
## 162  163     306.7    862.7         5          3.0
## 163  164     245.0    655.0       200           NA
## 164  165     348.3   1007.6        26          3.5
## 165  166     437.2   1135.7        21          4.0
## 166  167     311.7    684.8        40          3.0
## 167  168     208.0    776.4         8          3.6
## 168  169     395.0    835.0       122           NA
## 169  170     279.3    693.6        46          3.2
## 170  171     369.6    791.7       120          1.7
## 171  172     338.8    715.2        25          2.7
## 172  173     384.5    620.2       221          1.9
## 173  174     305.0    595.0       244           NA
## 174  175     305.0    565.0         2           NA
## 175  176     218.3    651.4         8          4.4
## 176  177     312.3    629.6       226          1.9
## 177  178     214.1    685.7        12          3.3
## 178  179     335.0    745.0       175           NA
## 179  180     275.0    805.0       490           NA
## 180  181     368.9    864.7        24          3.5
## 181  182     314.1    646.3       253          1.7
## 182  183     211.3    697.8        24          3.0
## 183  184     305.0    925.0       245           NA
## 184  185     353.9    730.9         5          2.7
## 185  186     305.0    745.0        95           NA
## 186  187     288.8    615.3       387          1.0
## 187  188     266.8    846.2         4          3.3
## 188  189     275.0    745.0       183           NA
## 189  190     335.0    775.0       760           NA
## 190  191     325.8    670.6       134          3.2
## 191  192     399.9    867.5        18          3.9
## 192  193      95.0    745.0        15           NA
## 193  194     305.0    655.0       360           NA
## 194  195     298.2    574.7        49          3.0
## 195  196     365.0    745.0        65           NA
## 196  197     367.2    679.1        23          3.8
## 197  198     215.0    925.0        80           NA
## 198  199     370.7    761.7        55          2.8
## 199  200     245.0    835.0       395           NA
## 200  201     304.7    858.7        50          2.9
## 201  202     323.6    602.7       242          1.4
## 202  203     278.6    692.5        38          2.6
## 203  204     445.3   1139.7        82          3.0
## 204  205     125.0    865.0       162           NA
## 205  206     236.1    578.9       110          2.8
## 206  207     286.9    856.8         8          2.9
## 207  208     202.8    763.0        15          3.6
## 208  209     245.0    595.0       300           NA
## 209  210     342.8    627.8       168          2.0
## 210  211     166.3    622.6        10          4.6
## 211  212     391.4    669.3        75          3.7
## 212  213     155.0    955.0       100           NA
## 213  214     275.0    895.0       185           NA
## 214  215     201.3    637.7        15          4.5
## 215  216     387.1    810.7       102          2.7
## 216  217     365.0    775.0        95           NA
## 217  218     215.7    530.4        78          4.7
## 218  219     344.6    802.5       177          1.7
## 219  220     277.2    676.0        94          1.9
## 220  221     227.4    675.7        61          3.5
## 221  222     365.0    655.0       342           NA
## 222  223     365.0    625.0        91           NA
## 223  224     185.0    895.0        65           NA
## 224  225     328.3    639.7       165          2.1
## 225  226     263.8    653.5       178          2.3
## 226  227     202.5    862.9        25          3.1
## 227  228     155.0    685.0       330           NA
## 228  229     305.0    715.0        91           NA
## 229  230     366.9    778.2       171          2.0
## 230  231     260.6    580.5        55          2.6
## 231  232     273.2    564.6        47          2.8
## 232  233     333.9    730.1        30          2.6
## 233  234     185.0    655.0       115           NA
## 234  235     259.8    587.9       119          2.1
## 235  236     260.8    668.6       107          2.6

\frametitle{Assessors for Db class}

We can access to one or several variables. Note that the contents of the Column corresponding to the target variable (i.e. January_temp) is produced as a series of values (printed along a line).

Also note the presence of samples with NA corresponding to those where the target variable is not informed.

dat["January_temp"]
##   [1] 1.7 2.0 4.6  NA 3.1 3.5 3.4 3.0 4.9 2.9  NA 1.3  NA 4.0 1.7  NA 1.9 3.3
##  [19] 2.3  NA 2.3 2.6  NA 2.7 2.9  NA 1.0 1.2  NA 3.1  NA 3.7 2.1 2.5 2.9  NA
##  [37]  NA  NA 3.1 2.1  NA 2.7 3.0  NA  NA 1.8  NA  NA 2.2 2.9 3.3  NA 5.0 1.6
##  [55]  NA 2.1 3.2 4.2 1.1  NA 2.7 0.6 3.2  NA 2.5 2.0 2.8  NA 3.2 3.2 4.5 3.3
##  [73] 4.1 2.2 1.7 4.3 5.2  NA 1.6 3.9 3.1  NA 3.5 4.7 3.6  NA 1.8 1.7  NA  NA
##  [91]  NA  NA  NA  NA  NA 1.7  NA 3.0 4.6 3.9 3.2 1.3  NA  NA  NA 4.7  NA 2.6
## [109] 2.0 4.7 1.2 2.9 0.9 3.0  NA 3.6 0.7 3.3  NA  NA  NA 2.7  NA 2.7 2.4  NA
## [127]  NA 2.0 2.6  NA 4.3  NA  NA  NA  NA 3.1 3.4 3.1 2.0 1.3 1.9  NA 3.3 2.7
## [145] 4.4  NA 3.0 0.9 0.7  NA 3.6  NA 3.5  NA 2.4 1.0  NA 3.6  NA  NA  NA  NA
## [163] 3.0  NA 3.5 4.0 3.0 3.6  NA 3.2 1.7 2.7 1.9  NA  NA 4.4 1.9 3.3  NA  NA
## [181] 3.5 1.7 3.0  NA 2.7  NA 1.0 3.3  NA  NA 3.2 3.9  NA  NA 3.0  NA 3.8  NA
## [199] 2.8  NA 2.9 1.4 2.6 3.0  NA 2.8 2.9 3.6  NA 2.0 4.6 3.7  NA  NA 4.5 2.7
## [217]  NA 4.7 1.7 1.9 3.5  NA  NA  NA 2.1 2.3 3.1  NA  NA 2.0 2.6 2.8 2.6  NA
## [235] 2.1 2.6

\frametitle{Assessors for Db class}

But it can be more restrictive as in the following paragraph, where we only consider the samples 10 to 15, and only consider the variables Latitude and Elevation.

dat[10:15, c("Latitude", "Elevation")]
##    Latitude Elevation
## 9     731.3        45
## 10    865.0        37
## 11    602.6       242
## 12    835.0       295
## 13    933.2        15
## 14    648.8       183

\frametitle{Assessors for Db class}

We can also replace the variable Name by their Column rank. Although this is not recommanded as the Column number may vary over time.

dat[10:15, 3:4]
##    Latitude Elevation
## 9     731.3        45
## 10    865.0        37
## 11    602.6       242
## 12    835.0       295
## 13    933.2        15
## 14    648.8       183

\frametitle{Assessors for Db class}

Please also note the feature that a variable whose name does not exist (newvar) in the data base, is created on the fly. Also note that variables may be specified with names referred to using traditional regexp expressions (i.e. the symbol '*' replaces any list of characters):

dat["newvar"] = 12.3 * dat["Elevation"] - 2.1 * dat["*temp"]
dat
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 2
## Number of Columns            = 6
## Maximum Number of UIDs       = 6
## Total number of samples      = 236
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1
## Column = 5 - Name = newvar - Locator = NA

\frametitle{Locators}

The locators are used to specify the role assigned to a Column for the rest of the study (unless changed further). The locator is characterized by its name (Z for a variable and X for a coordinate) within the Enumeration ELoc and its rank.

dat$setLocators(c("Longitude","Latitude"), ELoc_X())
## NULL
dat$setLocator("*temp", ELoc_Z(), cleanSameLocator=TRUE)
## NULL
dat
## 
## Data Base Characteristics
## =========================
## 
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension              = 2
## Number of Columns            = 6
## Maximum Number of UIDs       = 6
## Total number of samples      = 236
## 
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1
## Column = 5 - Name = newvar - Locator = NA

As can be seen in the printout, variables Latitude and Longitude have been designated as coordinates (pay attention to the order) and January_temp is the (unique) variable. Therefore any subsequent step will be performed as a monovariate 2-D process.

The locator is translated into a letter,number pair for better legibility: e.g. x1 for the first coordinate.


\frametitle {Plotting a Db}

Plot the contents of a Db using functions of the plot.R package. The proportional option is used to represent to january_temp variable

p = ggDefaultGeographic()
p = p + plot.point(dat, name_size="January_temp", show.legend.symbol = TRUE,
                   legend.name.size="Temperature")
p = p + plot.decoration(title="My Data Base", xlab="Easting", ylab="Northing")
ggPrint(p)


\frametitle {Plotting a Db}

A more elaborated graphic representation displays the samples with a symbol proportional to the Elevation and a color representing the Temperature.

p = ggDefaultGeographic()
p = p + plot.point(dat, name_size="Elevation", name_color="January_temp")
p = p + plot.decoration(title="My Data Base", xlab="Easting", ylab="Northing")
ggPrint(p)


\frametitle {Grid Data Base}

On the same area, a terrain model is available (as a demonstration file available in the package distribution). We first download it as an element of a data base defined on a grid support (DbGrid).

dlfile = "https://soft.minesparis.psl.eu/gstlearn/data/Scotland/Scotland_Elevations.NF"
fileNF = "Scotland_Elevations.NF"
download.file(dlfile, fileNF)
grid = DbGrid_createFromNF(fileNF)
grid
## 
## Data Base Grid Characteristics
## ==============================
## 
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension              = 2
## Number of Columns            = 4
## Maximum Number of UIDs       = 4
## Total number of samples      = 11097
## Number of active samples     = 3092
## 
## Grid characteristics:
## ---------------------
## Origin :     65.000   535.000
## Mesh   :      4.938     4.963
## Number :         81       137
## 
## Variables
## ---------
## Column = 0 - Name = Longitude - Locator = x1
## Column = 1 - Name = Latitude - Locator = x2
## Column = 2 - Name = Elevation - Locator = f1
## Column = 3 - Name = inshore - Locator = sel

We can check that the grid is constituted of 81 columns and 137 rows, or 11097 grid cells.


\frametitle{Selection}

We can check the presence of a variable (called inshore) which is assigned to the sel locator: this corresponds to a Selection which acts as a binary filter: some grid cells are active and others are masked off. The count of active samples is given in the previous printout (3092). This selection remains active until it is replaced or deleted (there may not be more than one selection defined at a time per data base). This is what can be seen in the following display where we represent the Elevation only within the inshore selection.

Note that any variable can be considered as a Selection: it must simply be assigned to the sel locator using the setLocator variable described earlier.

p = ggDefaultGeographic()
p = p + plot.grid(grid, name_raster="Elevation")
p = p + plot.decoration(title="My Grid", xlab="Easting", ylab="Northing")
ggPrint(p)


\frametitle{Final plot}

On this final plot, we combine grid and point representations.

p = ggDefaultGeographic()
p = p + plot.grid(grid, name_raster="Elevation")
p = p + plot.point(dat, name_size="Elevation", sizmin=1, sizmax=3, color="yellow")
p = p + plot.decoration(title="My Grid", xlab="Easting", ylab="Northing")
ggPrint(p)