%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
import gstlearn as gl
import gstlearn.plot as gp
import matplotlib.pyplot as plt
import numpy as np
import os
import urllib.request
Then we download the data base dat.
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Scotland/Scotland_Temperatures.NF'
temp_nf, head = urllib.request.urlretrieve(url)
dat = gl.Db.createFromNF(temp_nf)
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Scotland/Scotland_Elevations.NF'
elev_nf, head = urllib.request.urlretrieve(url)
target = gl.DbGrid.createFromNF(elev_nf)
ndim = 2
gl.defineDefaultSpace(gl.ESpaceType.RN, ndim);
dat.setName("January_temp","Temperature")
unique_neigh = gl.NeighUnique.create()
Statistics
st = dat.statistics(["Elevation", "Temperature"])
st = target.statistics(["Elevation"], title="Target Elevation Mean")
MEAN Elevation 87.974 Temperature 2.815 Target Elevation Mean 241.152
Observations
gp.setDefaultGeographic(dims=[8,8])
ax = dat.plot(name_color="Elevation")
Map of the elevations
ax = target.plot("Elevation")
Temperature vs. Elevation
ax = gp.correlation(dat, namex="Elevation", namey="Temperature", asPoint=True, regrLine=True)
ax.decoration(title="Correlation between Temperature and Elevation")
Variograms and Non-stationarity
Directional variograms (N-S and E-W): no drift or with first order global trend
varioparam = gl.VarioParam.createMultiple(ndir=2, npas=30, dpas=10)
vario_raw2dir = gl.Vario(varioparam, dat)
err = vario_raw2dir.compute()
model = gl.Model.create()
model.setDriftIRF(1)
vario_res2dir = gl.Vario(varioparam, dat)
err = vario_res2dir.compute(model=model)
axs = vario_raw2dir.plot()
axs = vario_res2dir.plot(linestyle='dashed')
ax.decoration(title="Temperature (°C)", xlabel = "Distance (km)", ylabel = "Variogram")
Global trend
Find the coefficients of the global regression (first order polynomial)
err = gl.regression(dat, name0="Temperature", mode=2, model=model, verbose=True)
Linear Regression ----------------- - Calculated on 151 active values - Explanatory Variable #1 = 3.521360 - Explanatory Variable #2 = -0.007466 - Explanatory Variable #3 = 0.001978 - Initial variance = 1.019788 - Variance of residuals = 0.735557
Modelling Variogram of Raw Data with Anisotropy
fitmod = gl.Model()
err = fitmod.fit(vario_raw2dir,types=[gl.ECov.NUGGET, gl.ECov.EXPONENTIAL, gl.ECov.CUBIC])
ax = gp.varmod(vario_raw2dir, fitmod, lw=2)
ax.decoration(title="Temperature (°C)", xlabel = "Distance (km)", ylabel = "Variogram")
Ordinary Kriging - Cross-Validation
Perform Cross-validation (using Ordinary Kriging) and calculate the Mean Squared Error.
err = gl.xvalid(dat, fitmod, unique_neigh, namconv=gl.NamingConvention("OK",True,True,False))
st = dat.statistics(["OK.Temperature.*"])
MEAN OK.Temperature.esterr -0.041 OK.Temperature.stderr -0.044
Ordinary Kriging - Estimation
err = gl.kriging(dat, target, fitmod, unique_neigh, namconv=gl.NamingConvention("OK"))
Graphic representation of Ordinary Kriging estimation
ax = target.plot("OK*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature - Ordinary Kriging")
Statistics on the Ordinary Kriging
st = target.statistics(["OK.Temperature.*"])
MEAN OK.Temperature.estim 2.806 OK.Temperature.stdev 0.460
Fitting Variogram of Residuals
fitmodUK = gl.Model()
err = fitmodUK.fit(vario_res2dir,types=[gl.ECov.SPHERICAL],optvar=gl.Option_VarioFit(False,False))
ax = gp.varmod(vario_res2dir, fitmodUK, lw=2)
ax.decoration(title="Temperature (°C)", xlabel = "Distance (km)", ylabel = "Variogram")
Note that the residuals seem isotropic, hence use isotropic option for Fitting.
Universal Kriging - Cross-Validation
Perform Cross-validation (using Universal Kriging) and calculate the Mean Squared Error.
err = gl.xvalid(dat, fitmodUK, unique_neigh, namconv=gl.NamingConvention("UK",True,True,False))
st = dat.statistics(["UK.Temperature.*"])
MEAN UK.Temperature.esterr -0.352 UK.Temperature.stderr -0.499
Universal Kriging - Estimation
err = gl.kriging(dat, target, fitmodUK, unique_neigh, namconv=gl.NamingConvention("UK"))
Graphic representation
ax = target.plot("UK*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature - Universal Kriging")
Statistics on Universal Kriging
st = target.statistics(["UK.Temperature.*"])
MEAN UK.Temperature.estim 2.514 UK.Temperature.stdev 0.482
Comparing Ordinary and Universal Krigings
ax = gp.correlation(target, namex="OK*estim", namey="UK*estim", bissLine=True, bins=100)
ax.decoration(xlabel="Ordinary Kriging",ylabel="Universal Kriging")
Comparing Temperature and Elevation
ax = gp.correlation(dat, namex="Elevation", namey="Temperature",regrLine=True,asPoint=True)
Average of Elevations of all data and average of Elevations of meteorological stations
st = dat.statistics(["Elevation", "Temperature"])
MEAN Elevation 87.974 Temperature 2.815
Average of Elevations when Temperatures are defined
sel = dat["Temperature"]
uid = dat.addSelection(~np.isnan(sel),"Temperature defined")
st = dat.statistics(["Elevation", "Temperature"])
MEAN Elevation 87.974 Temperature 2.815
Bivariate Modelling
dat.deleteColumn("Temperature defined")
dat.setLocators(["Temperature", "Elevation"], gl.ELoc.Z)
Bivariate Modelling
varioexp2var = gl.Vario.create(varioparam, dat)
err = varioexp2var.compute()
fitmod2var = gl.Model()
err = fitmod2var.fit(varioexp2var,
types=[gl.ECov.NUGGET, gl.ECov.EXPONENTIAL, gl.ECov.CUBIC])
ax = gp.varmod(varioexp2var, fitmod2var, lw=2)
gp.decoration(ax,title="Temperature (°C) and Elevation")
Cokriging with elevation - Cross-Validation
Most of the processes are more time-consuming in Unique Neighborhood. We create a small neighborhood for demonstration.
moving_neigh = gl.NeighMoving.create(radius = 1000, nmaxi = 10)
Perform Cross-validation (Bivariate Model) and calculate the Mean Squared Error.
err = gl.xvalid(dat, fitmod2var, moving_neigh, namconv=gl.NamingConvention("COK",True,True,False))
st = dat.statistics(["COK.Temperature.*"])
MEAN COK.Temperature.esterr -0.407 COK.Temperature.stderr -0.515
Cokriging with elevation - Estimate
err = gl.kriging(dat, target, fitmod2var, unique_neigh, namconv=gl.NamingConvention("COK"))
Graphic representation
ax = target.plot("COK.T*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature - CoKriging (with Elevation)")
Statistics
st = target.statistics(["COK.Temperature.*"])
MEAN COK.Temperature.estim 2.553 COK.Temperature.stdev 0.388
Comparing Kriging and CoKriging
ax = gp.correlation(target, namex="OK.T*estim", namey="COK.T*estim", bissLine=True, bins=100)
ax.decoration(xlabel="Ordinary Kriging",ylabel="Ordinary CoKriging")
Note that CoKriging produces estimates which are mostly larger than Kriging estimates.
Kriging the residuals
$$ Z_2(s)=b + a Z_1(s) + R(s) $$A first call to the regression function is done in order to retreive the coefficients of the regression
regr = gl.regression(dat, "Temperature", ["Elevation"], 0, flagCste=True, verbose=True)
b = regr.coeffs[0]
a = regr.coeffs[1]
Linear Regression ----------------- - Calculated on 151 active values - Constant term = 3.611970 - Explanatory Variable #1 = -0.009064 - Initial variance = 1.019788 - Variance of residuals = 0.363298
We calculate the Residuals and provide some statistics
err = gl.dbRegression(dat, "Temperature", ["Elevation"],
namconv = gl.NamingConvention("Regr",True,True,False))
st = dat.statistics(["Regr*"])
0.000
ax = gp.correlation(dat, namex="Elevation", namey="Regr*",regrLine=True,asPoint=True)
Kriging the residuals - Variogram of the residual
dat.setLocator("Regr*",gl.ELoc.Z, cleanSameLocator=True)
varioexpR = gl.Vario(varioparam, dat)
err = varioexpR.compute()
fitmodR = gl.Model()
err = fitmodR.fit(varioexpR,types=[gl.ECov.NUGGET, gl.ECov.SPHERICAL, gl.ECov.ORDER1_GC])
ax = gp.varmod(varioexpR, fitmodR, lw=2)
ax.decoration(title="Temperature Residual",xlabel = "Distance (km)", ylabel = "Variogram")
Kriging the residuals
err = gl.kriging(dat, target, fitmodR, unique_neigh, namconv=gl.NamingConvention("ROK"))
ax = target.plot("ROK.Regr*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature Residuals")
Kriging the residuals - Computing the estimate
$$ Z_2^{\star} = b + a Z_1(s) + R(s)^{OK} $$ROK_estim = target["ROK.Regr*estim"] + b + a * target["Elevation"]
uid = target.addColumns(ROK_estim,"KR.Temperature.estim")
ax = target.plot("KR.T*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature with Residuals")
Correlation between Ordinary Kriging and CoKriging
ax = gp.correlation(target, namex="OK.T*estim", namey="COK.T*estim", bissLine=True, bins=100, flagSameAxes=True)
ax.decoration(xlabel="Ordinary Kriging",ylabel="Ordinary CoKriging")
Correlation between Ordinary Kriging and Kriging withResiduals
ax = gp.correlation(target, namex="OK.T*estim", namey="KR.T*estim", bissLine=True, bins=100, flagSameAxes=True)
ax.decoration(xlabel="Ordinary Kriging",ylabel="Kriging with Residuals")
Some statistics for comparison
st = target.statistics(["OK.T*estim", "UK.T*estim", "COK.T*estim", "KR.T*estim"])
MEAN OK.Temperature.estim 2.806 UK.Temperature.estim 2.514 COK.Temperature.estim 2.553 KR.Temperature.estim 1.445
Preparing the data bases
dat.setLocator("Temperature",gl.ELoc.Z,cleanSameLocator=True)
dat.setLocator("Elevation",gl.ELoc.F,cleanSameLocator=True)
varioKED = gl.Vario(varioparam, dat)
model = gl.Model.create()
model.setDriftIRF(order=0, nfex=1)
err = varioKED.compute(model=model)
Comparing the Experimental variograms
axs = vario_raw2dir.plot()
axs = varioKED.plot(linestyle='dashed')
Model of Residuals (External Drift)
modelKED = gl.Model()
err = modelKED.fit(varioKED,types=[gl.ECov.NUGGET, gl.ECov.CUBIC, gl.ECov.GAUSSIAN])
modelKED.setDriftIRF(order = 0, nfex = 1)
Cross-Validation with External Drift
err = gl.xvalid(dat, modelKED, unique_neigh, namconv=gl.NamingConvention("KED",True,True,False))
st = dat.statistics(["KED.Temperature.*"])
MEAN KED.Temperature.esterr -0.009 KED.Temperature.stderr -0.011
Kriging with External Drift
err = gl.kriging(dat, target, modelKED, unique_neigh, namconv=gl.NamingConvention("KED"))
Graphic representation
ax = target.plot("KED.T*estim")
ax = dat.plot(name_size="Temperature")
ax.decoration(title="Temperature with External Drift")
Statistics on Kriging with Elevation as External Drift
st = target.statistics(["KED.T*"])
MEAN KED.Temperature.estim 1.778 KED.Temperature.stdev 0.396
Comparing Ordinary Kriging and Kriging with External Drift
ax = gp.correlation(target, namex="OK.T*estim", namey="KED.T*estim", bissLine=True, bins=100, flagSameAxes=True)
ax.decoration(xlabel="Ordinary Kriging",ylabel="Kriging with External Drift")
Note that negative Estimates are present when using External Drift.
Statistics on the cross-validation Mean Squared Errors (for Temperature)
st = dat.statistics(["*T*.esterr"])
MEAN OK.Temperature.esterr -0.041 UK.Temperature.esterr -0.352 COK.Temperature.esterr -0.407 COK.Elevation.esterr 41.809 KED.Temperature.esterr -0.009
Statistics on the various estimates
st = target.statistics(["*.Temperature.estim"])
MEAN OK.Temperature.estim 2.806 UK.Temperature.estim 2.514 COK.Temperature.estim 2.553 ROK.Regr.Temperature.estim 0.019 KR.Temperature.estim 1.445 KED.Temperature.estim 1.778
Statistics on the various standard deviation of estimation errors
st = target.statistics(["*.Temperature.stdev"])
MEAN OK.Temperature.stdev 0.460 UK.Temperature.stdev 0.482 COK.Temperature.stdev 0.388 ROK.Regr.Temperature.stdev 0.362 KED.Temperature.stdev 0.396