%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
import matplotlib.pyplot as plt
import gstlearn as gl
import gstlearn.plot as gp
import numpy as np
import pandas as pd
import scipy as sp
from scipy import interpolate
import os
import urllib.request
import tempfile
#!pip install --upgrade geopandas
#!pip uninstall -y gstlearn
#!pip install gstlearn==0.1.38
DIRDATA = tempfile.gettempdir()
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Alluvial/Oise_Thickness.csv'
filename, head = urllib.request.urlretrieve(url)
csv = gl.CSVformat(True, 0, ";", ",", "9999")
data = gl.Db.createFromCSV(filename, csv, False)
data.setLocator("X",gl.ELoc.X,0)
data.setLocator("Y",gl.ELoc.X,1)
data.setLocator("Epaisseur",gl.ELoc.L,0)
data.setLocator("Epaisseur_1",gl.ELoc.U,0)
sf = gl.DbStringFormat()
sf.setFlags(flag_stats=True)
thickness = data.getWithinBounds(0)
err = data.addColumns(thickness,"Thickness",gl.ELoc.Z)
err = gl.db_duplicate(data)
data.display()
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 7 Maximum Number of UIDs = 7 Total number of samples = 1022 Number of active samples = 1007 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = X - Locator = x1 Column = 2 - Name = Y - Locator = x2 Column = 3 - Name = Epaisseur - Locator = lower1 Column = 4 - Name = Epaisseur_1 - Locator = upper1 Column = 5 - Name = Thickness - Locator = z1 Column = 6 - Name = Duplicate - Locator = sel
fig,ax = gp.init()
ax.symbol(data,name_color="Thickness")
plt.show()
gp.plot(data,name_color="Thickness")
plt.hist(thickness)
(array([ 24., 64., 148., 219., 219., 156., 89., 60., 29., 14.]), array([ 0.4 , 1.95, 3.5 , 5.05, 6.6 , 8.15, 9.7 , 11.25, 12.8 , 14.35, 15.9 ]), <BarContainer object of 10 artists>)
data
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 7 Maximum Number of UIDs = 7 Total number of samples = 1022 Number of active samples = 1007 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = X - Locator = x1 Column = 2 - Name = Y - Locator = x2 Column = 3 - Name = Epaisseur - Locator = lower1 Column = 4 - Name = Epaisseur_1 - Locator = upper1 Column = 5 - Name = Thickness - Locator = z1 Column = 6 - Name = Duplicate - Locator = sel
filename = os.path.join(DIRDATA,"Oise_Data.ascii")
data.dumpToNF(filename)
True
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Alluvial/Oise_Alluvial.csv'
fileAlluvial, head = urllib.request.urlretrieve(url)
poly = gl.Polygons.createFromCSV(fileAlluvial, csv, False)
poly.display()
Polygons -------- Number of Polygon Sets = 1
ax = poly.plot()
grid = gl.DbGrid.create(nx = [3300,400],dx = [50.,50.], x0 = [630000.,6865000.],angles=[40,0])
fig, ax = gp.initGeographic()
ax.raster(grid,"x1",alpha=0.3)
ax.symbol(data)
<matplotlib.collections.PathCollection at 0x7f99550db6a0>
err = gl.db_polygon(grid,poly)
grid
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 4 Maximum Number of UIDs = 4 Total number of samples = 1320000 Number of active samples = 138248 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = sel
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Alluvial/Oise_Centerline.csv'
fileCenter, head = urllib.request.urlretrieve(url)
## Loading Centerline data from file
df1 = pd.read_csv (fileCenter, sep=';')
xc = list(df1['X'])
yc = list(df1['Y'])
x1=xc[1:499]
y1=yc[1:499]
## Loading alluvial plain contours from file & Separate into two polylines
df = pd.read_csv (fileAlluvial, sep=';')
xp = list(df['X'])
yp = list(df['Y'])
x2=xp[1:xp.index(max(xp))]
x3=xp[len(xp):xp.index(max(xp))+1:-1]
y2=yp[1:xp.index(max(xp))]
y3=yp[len(xp):xp.index(max(xp))+1:-1]
## Adding supplementary control points at the edges
# coordinates of extremes
XA1=640000
YA1=6875000
XB1=740000
YB1=6955000
XA2=630000
YA2=6890000
XB2=735000
YB2=6980000
# Forming two supplementary vectors at the edges
n=19
x4= np.zeros(n)
y4= np.zeros(n)
x5= np.zeros(n)
y5= np.zeros(n)
for i in range(0,len(x4)):
x4[i]=(XA1+(XB1-XA1)/(n-1)*i)
y4[i]=(YA1+(YB1-YA1)/(n-1)*i)
x5[i]=(XA2+(XB2-XA2)/(n-1)*i)
y5[i]=(YA2+(YB2-YA2)/(n-1)*i)
# Methode du gradient
# https://stackoverflow.com/questions/28269379/curve-curvature-in-numpy
dx_dt1 = np.gradient(x1)
dy_dt1 = np.gradient(y1)
velocity = np.array([ [dx_dt1[i], dy_dt1[i]] for i in range(dx_dt1.size)])
ds_dt1 = np.sqrt(dx_dt1 * dx_dt1 + dy_dt1 * dy_dt1)
tangent1 = np.array([1/ds_dt1] * 2).transpose() * velocity
dx_dt2 = np.gradient(x2)
dy_dt2 = np.gradient(y2)
velocity2 = np.array([ [dx_dt2[i], dy_dt2[i]] for i in range(dx_dt2.size)])
ds_dt2 = np.sqrt(dx_dt2 * dx_dt2 + dy_dt2 * dy_dt2)
tangent2 = np.array([1/ds_dt2] * 2).transpose() * velocity2
dx_dt3 = np.gradient(x3)
dy_dt3 = np.gradient(y3)
velocity3 = np.array([ [dx_dt3[i], dy_dt3[i]] for i in range(dx_dt3.size)])
ds_dt3 = np.sqrt(dx_dt3 * dx_dt3 + dy_dt3 * dy_dt3)
tangent3 = np.array([1/ds_dt3] * 2).transpose() * velocity3
dx_dt4 = np.gradient(x4)
dy_dt4 = np.gradient(y4)
velocity4 = np.array([ [dx_dt4[i], dy_dt4[i]] for i in range(dx_dt4.size)])
ds_dt4 = np.sqrt(dx_dt4 * dx_dt4 + dy_dt4 * dy_dt4)
tangent4 = np.array([1/ds_dt4] * 2).transpose() * velocity4
dx_dt5 = np.gradient(x5)
dy_dt5 = np.gradient(y5)
velocity5 = np.array([ [dx_dt5[i], dy_dt5[i]] for i in range(dx_dt5.size)])
ds_dt5 = np.sqrt(dx_dt5 * dx_dt5 + dy_dt5 * dy_dt5)
tangent5 = np.array([1/ds_dt5] * 2).transpose() * velocity5
tangent=np.concatenate((tangent1,tangent2,tangent3,tangent4,tangent5),axis=0)
x0=np.concatenate((x1,x2,x3,x4,x5),axis=0)
y0=np.concatenate((y1,y2,y3,y4,y5),axis=0)
u0 = tangent[:, 0]
v0 = tangent[:, 1]
# Visualize vectors
fig, ax = plt.subplots(figsize = (100,100))
plt.figure(1)
plt.quiver(x0,y0,u0,v0)
plt.plot(x0,y0,'ro')
#plt.savefig('vectors.pdf')
[<matplotlib.lines.Line2D at 0x7f9957280e50>]
df = pd.read_csv (fileAlluvial, sep=';')
df
X | Y | |
---|---|---|
0 | 631065 | 6875650 |
1 | 631083 | 6875930 |
2 | 631145 | 6876080 |
3 | 631200 | 6876700 |
4 | 631169 | 6877010 |
... | ... | ... |
1432 | 632202 | 6878600 |
1433 | 632195 | 6878410 |
1434 | 632206 | 6878200 |
1435 | 632205 | 6877830 |
1436 | 632413 | 6876610 |
1437 rows × 2 columns
# Interpolating the vectors into vector map -> https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
xx = np.linspace(630000, 742000, 2240)
yy = np.linspace(6875000, 6982200, 2144)
xx, yy = np.meshgrid(xx, yy)
u0.shape=(np.size(u0),)
np.shape(u0)
v0.shape=(np.size(v0),)
np.shape(v0)
points = np.transpose(np.vstack((x0, y0)))
u_interp = interpolate.griddata(points, u0, (xx, yy), method='linear')
v_interp = interpolate.griddata(points, v0, (xx, yy), method='linear')
xx1 = np.concatenate(xx)
yy1 = np.concatenate(yy)
u_interp1 = np.concatenate(u_interp)
v_interp1 = np.concatenate(v_interp)
#Créer une Db point avec xx, yy, u_interp, v_interp
dbv = gl.Db()
dbv.addColumns(xx1,"xx",gl.ELoc.X, 0)
dbv.addColumns(yy1,"yy",gl.ELoc.X, 1)
dbv.addColumns(u_interp1,"u_interp",gl.ELoc.Z, 0)
dbv.addColumns(v_interp1,"v_interp",gl.ELoc.Z, 1)
dbv.display()
grid.setLocator("Pol*")
grid.display()
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 4 Maximum Number of UIDs = 4 Total number of samples = 4802560 Variables --------- Column = 0 - Name = xx - Locator = x1 Column = 1 - Name = yy - Locator = x2 Column = 2 - Name = u_interp - Locator = z1 Column = 3 - Name = v_interp - Locator = z2 Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 4 Maximum Number of UIDs = 4 Total number of samples = 1320000 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = NA
#Tester la valeur retournée par migrate :
grid.deleteColumn("Migr*")
grid.display()
gl.migrate(dbv, grid, "u_interp")
gl.migrate(dbv, grid, "v_interp")
grid.setLocator("Migrate*", gl.ELoc.Z)
#grid.display(sf)
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 4 Maximum Number of UIDs = 4 Total number of samples = 1320000 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = NA
grid.useSel = False
grid.setLocator("Polygon")
uid_selection=grid.addSelectionByLimit("*u_interp*", gl.Limits([-10], [10]), "vec_define")
xplt = grid.getColumnByLocator(gl.ELoc.X,0,useSel=True)
yplt = grid.getColumnByLocator(gl.ELoc.X,1,useSel=True)
uplt = grid.getColumnByLocator(gl.ELoc.Z,0,useSel=True)
vplt = grid.getColumnByLocator(gl.ELoc.Z,1,useSel=True)
plt.figure(figsize=(200,200))
plt.quiver(xplt, yplt, uplt, vplt, headwidth =3, width= 0.0005, scale = 200, headlength= 5, label='Field vectors')
plt.plot(x0,y0,'ro',markersize=10, label='Alluvial plain')
#plt.savefig('vectorsfield.pdf')
[<matplotlib.lines.Line2D at 0x7f98fb6b00d0>]
grid
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 7 Maximum Number of UIDs = 7 Total number of samples = 1320000 Number of active samples = 927470 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = NA Column = 4 - Name = Migrate.u_interp - Locator = z1 Column = 5 - Name = Migrate.v_interp - Locator = z2 Column = 6 - Name = vec_define - Locator = sel
fig,ax = gp.initGeographic()
ax.raster(grid,"*.u_interp",alpha=0.3,useSel=False)
ax.polygon(poly)
ax.symbol(data)
<matplotlib.collections.PathCollection at 0x7f9880133340>
filename = os.path.join(DIRDATA,"Oise_GridVector.ascii")
grid.dumpToNF(filename)
True
fileSave = os.path.join(DIRDATA,"Oise_GridVector.ascii")
grid = gl.DbGrid.createFromNF(fileSave)
u = grid["Migrate.u_interp"]
v = grid["Migrate.v_interp"]
res = 0. * u
for i in range(u.shape[0]):
res[i] = gl.GH.rotationGetAngles((u[i], v[i]))[0]
grid.deleteColumn("angles*")
grid["angles1"]= res
grid.setLocator("angles*",gl.ELoc.NOSTAT)
grid.setLocator("Poly*", gl.ELoc.SEL)
vmin = 0.5
vmax = 1.5
nxy = grid.getNXs()
image2 = gl.BImage(nxy)
tab = grid.getColumn("Polygon",useSel=False)
image = gl.morpho_double2image(nxy,tab,vmin,vmax)
localVD = gl.VectorDouble(len(tab))
gl.morpho_dilation(0, [3,3], image, image2)
for i in range(10):
gl.morpho_dilation(0, [1,1], image, image2)
gl.morpho_dilation(0, [1,1], image2, image)
#gl.morpho_dilation(0, [1,1], image, image2)
gl.morpho_image2double(image2, 0, 1., 0., localVD)
grid["res"]=localVD.getVector()
grid.setLocator("res",gl.ELoc.SEL)
fig,ax = gp.initGeographic()
ax.raster(grid,"res")
<matplotlib.collections.QuadMesh at 0x7f98e4ad66e0>
fileFinal = os.path.join(DIRDATA,"Oise_GridVectorFinal.ascii")
grid.dumpToNF(fileFinal)
True