%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
import matplotlib.pyplot as plt
import gstlearn as gl
import gstlearn.plot as gp
import numpy as np
import pandas as pd
import scipy as sp
from scipy import interpolate
import os
import urllib.request
#!pip install gstlearn
#!pip uninstall -y gstlearn
#!pip3 install numpy --upgrade
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Alluvial/Oise_GridVectorFinal.ascii'
filename, head = urllib.request.urlretrieve(url)
grid = gl.DbGrid.createFromNF(filename)
grid
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 9 Maximum Number of UIDs = 9 Total number of samples = 1320000 Number of active samples = 278129 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = NA Column = 4 - Name = Migrate.u_interp - Locator = z1 Column = 5 - Name = Migrate.v_interp - Locator = z2 Column = 6 - Name = vec_define - Locator = NA Column = 7 - Name = angles1 - Locator = nostat1 Column = 8 - Name = res - Locator = sel
ranges = [500,10000]
oldMethod = False
url = 'https://soft.minesparis.psl.eu/gstlearn/data/Alluvial/Oise_Data.ascii'
filename, head = urllib.request.urlretrieve(url)
data = gl.Db.createFromNF(filename)
data
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 7 Maximum Number of UIDs = 7 Total number of samples = 1022 Number of active samples = 1007 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = X - Locator = x1 Column = 2 - Name = Y - Locator = x2 Column = 3 - Name = Epaisseur - Locator = lower1 Column = 4 - Name = Epaisseur_1 - Locator = upper1 Column = 5 - Name = Thickness - Locator = z1 Column = 6 - Name = Duplicate - Locator = sel
myVarioParamBidir = gl.VarioParam()
mydir = gl.DirParam(40,800.,0.5,45.,0,0,np.nan,np.nan,0.,[],[1,1])
myVarioParamBidir.addDir(mydir)
mydir = gl.DirParam(20,400.,0.5,45.,0,0,np.nan,np.nan,0.,[],[-1,1])
myVarioParamBidir.addDir(mydir)
myVarioBidir = gl.Vario(myVarioParamBidir,data)
err = myVarioBidir.compute(gl.ECalcVario.VARIOGRAM)
myVarioBidir.display()
ax = gp.varmod(myVarioBidir,idir=0)
ax.decoration(title="Bi-directional Variogram for thickness(45°)")
ax = gp.varmod(myVarioBidir,idir=1)
ax.decoration(title="Bi-directional Variogram for thickness(45/135°)")
Variogram characteristics ========================= Number of variable(s) = 1 Number of direction(s) = 2 Space dimension = 2 Variance-Covariance Matrix 8.308 Direction #1 ------------ Number of lags = 40 Direction coefficients = 1.000 1.000 Direction angles (degrees) = 45.000 0.000 Tolerance on direction = 45.000 (degrees) Calculation lag = 800.000 Tolerance on distance = 50.000 (Percent of the lag value) For variable 1 Rank Npairs Distance Value 0 1490.000 223.076 4.288 1 4135.000 817.513 6.027 2 4998.000 1597.587 5.765 3 5136.000 2402.372 7.172 4 4916.000 3203.179 7.076 5 5370.000 3996.268 6.865 6 5948.000 4804.243 6.811 7 5990.000 5607.329 6.236 8 5883.000 6392.169 6.132 9 5766.000 7198.769 7.205 10 5597.000 8003.510 6.703 11 4787.000 8802.057 7.668 12 5403.000 9590.324 6.747 13 5078.000 10419.574 6.709 14 5653.000 11189.885 6.865 15 6134.000 12008.161 6.501 16 5399.000 12774.078 6.778 17 4853.000 13605.558 6.502 18 4516.000 14393.275 6.467 19 4757.000 15204.141 6.521 20 4609.000 16000.765 5.898 21 4440.000 16792.781 6.951 22 4748.000 17616.270 7.334 23 6281.000 18422.038 7.215 24 5730.000 19188.968 7.037 25 5347.000 19996.444 6.630 26 5141.000 20791.941 7.823 27 5458.000 21593.393 7.906 28 4791.000 22407.613 7.568 29 5377.000 23190.787 9.347 30 4959.000 24009.942 7.417 31 5189.000 24797.152 7.993 32 5187.000 25608.299 7.774 33 5398.000 26409.517 8.090 34 4921.000 27190.774 7.407 35 4706.000 27991.019 7.817 36 4497.000 28793.891 7.413 37 5282.000 29647.849 7.006 38 5399.000 30398.721 7.503 39 6070.000 31199.474 7.760 Direction #2 ------------ Number of lags = 20 Direction coefficients = -1.000 1.000 Direction angles (degrees) = 135.000 0.000 Tolerance on direction = 45.000 (degrees) Calculation lag = 400.000 Tolerance on distance = 50.000 (Percent of the lag value) For variable 1 Rank Npairs Distance Value 0 594.000 119.131 2.777 1 1399.000 393.836 4.535 2 1453.000 793.785 6.290 3 1224.000 1196.400 6.529 4 1032.000 1596.868 7.385 5 858.000 1983.161 7.192 6 697.000 2404.699 7.787 7 675.000 2794.542 7.751 8 419.000 3189.263 8.768 9 354.000 3597.904 11.252 10 339.000 3996.583 9.995 11 260.000 4402.766 7.896 12 232.000 4792.850 7.453 13 177.000 5178.782 7.800 14 172.000 5586.833 6.960 15 100.000 5978.383 9.960 16 89.000 6394.625 9.218 17 55.000 6800.319 5.859 18 30.000 7199.585 9.574 19 39.000 7641.196 4.828
model = gl.Model.createFromDb(data)
structs = [gl.ECov.NUGGET,gl.ECov.BESSEL_K]
#consNug = gl.ConsItem.define(gl.EConsElem.SILL,0, type = gl.EConsType.UPPER,value = 0.1)
cons1P = gl.ConsItem.define(gl.EConsElem.PARAM,1, type = gl.EConsType.EQUAL,value = 1)
#cons1Rm = gl.ConsItem.define(gl.EConsElem.RANGE,1, type = gl.EConsType.LOWER,value = 100)
#cons1RM = gl.ConsItem.define(gl.EConsElem.RANGE,1, type = gl.EConsType.UPPER,value = 350)
#cons2P = gl.ConsItem.define(gl.EConsElem.PARAM,2, type = gl.EConsType.EQUAL,value = 2)
#cons2Rm = gl.ConsItem.define(gl.EConsElem.RANGE,2, type = gl.EConsType.LOWER,value = 100)
#cons2RM = gl.ConsItem.define(gl.EConsElem.RANGE,2, type = gl.EConsType.UPPER,value = 400)
a = gl.Constraints()
#a.addItem(consNug)
a.addItem(cons1P)
#a.addItem(cons1Rm)
#a.addItem(cons1RM)
#a.addItem(cons2P)
#a.addItem(cons2Rm)
#a.addItem(cons2RM)
err = model.fit(myVarioBidir,structs,constraints=a)
#err = model.fit(myVarioBidir,[gl.ECov.NUGGET,gl.ECov.BESSEL_K,gl.ECov.BESSEL_K], False)
model.display()
ax = gp.varmod(myVarioBidir,model,idir=0)
ax = gp.varmod(myVarioBidir,model,idir=1)
Model characteristics ===================== Space dimension = 2 Number of variable(s) = 1 Number of basic structure(s) = 2 Number of drift function(s) = 0 Number of drift equation(s) = 0 Covariance Part --------------- Nugget Effect - Sill = 2.215 K-Bessel (Third Parameter = 1) - Sill = 4.700 - Ranges = 1046.558 1497.411 - Theo. Ranges = 302.115 432.265 - Angles = 45.000 0.000 - Rotation Matrix [, 0] [, 1] [ 0,] 0.707 -0.707 [ 1,] 0.707 0.707 Total Sill = 6.915
if not oldMethod :
model = gl.Model.createFromDb(data)
covBessel = gl.CovAniso.createAnisotropic(type = gl.ECov.BESSEL_K,ranges=ranges,sill=4.7,param=1,ctxt=model.getContext())
covNugget = gl.CovAniso.createIsotropic(type = gl.ECov.NUGGET,sill=2.2,ctxt=model.getContext(),range=1)
model.addCov(covNugget)
model.addCov(covBessel)
grid.setLocator("Poly*", gl.ELoc.SEL)
#grid.setLocator("Poly*",gl.ELoc.UNKNOWN)
model.setDriftIRF(order = 0)
model
Model characteristics ===================== Space dimension = 2 Number of variable(s) = 1 Number of basic structure(s) = 2 Number of drift function(s) = 1 Number of drift equation(s) = 1 Covariance Part --------------- Nugget Effect - Sill = 2.200 K-Bessel (Third Parameter = 1) - Sill = 4.700 - Ranges = 500.000 10000.000 - Theo. Ranges = 144.338 2886.751 Total Sill = 6.900 Drift Part ---------- Universality Condition
u = grid["Migrate.u_interp"]
v = grid["Migrate.v_interp"]
res = 0. * u
for i in range(u.shape[0]):
codir = gl.VectorDouble()
codir.push_back(u[i])
codir.push_back(v[i])
res[i] = gl.GH.rotationGetAngles(codir)[0]
grid.deleteColumn("angles*")
if not oldMethod:
grid["angles1"]= res
grid.setLocator("angles*",gl.ELoc.NOSTAT)
nostat = gl.NoStatArray(["M2A"],grid)
model.addNoStat(nostat)
grid.deleteColumns(["spde*"])
data
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 7 Maximum Number of UIDs = 7 Total number of samples = 1022 Number of active samples = 1007 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = X - Locator = x1 Column = 2 - Name = Y - Locator = x2 Column = 3 - Name = Epaisseur - Locator = lower1 Column = 4 - Name = Epaisseur_1 - Locator = upper1 Column = 5 - Name = Thickness - Locator = z1 Column = 6 - Name = Duplicate - Locator = sel
spde = gl.SPDE(model,grid,data,gl.ESPDECalcMode.KRIGING)
uid_result= spde.compute(grid)
grid
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 10 Maximum Number of UIDs = 11 Total number of samples = 1320000 Number of active samples = 138248 Grid characteristics: --------------------- Origin : 630000.0006865000.000 Mesh : 50.000 50.000 Number : 3300 400 Rotation Angles = 40.000 0.000 Direct Rotation Matrix [, 0] [, 1] [ 0,] 0.766 -0.643 [ 1,] 0.643 0.766 Inverse Rotation Matrix [, 0] [, 1] [ 0,] 0.766 0.643 [ 1,] -0.643 0.766 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = Polygon - Locator = sel Column = 4 - Name = Migrate.u_interp - Locator = NA Column = 5 - Name = Migrate.v_interp - Locator = NA Column = 6 - Name = vec_define - Locator = NA Column = 7 - Name = res - Locator = NA Column = 8 - Name = angles1 - Locator = nostat1 Column = 9 - Name = spde.Thickness.kriging - Locator = z1
#fig,ax = gp.initGeographic()
#ax.raster(grid,"spde*kriging",cmap="gnuplot2", flagLegend = True)
plt.figure(figsize=[20,12])
gp.raster(grid,"spde*kriging",cmap="gnuplot2", flagLegend = True)
<matplotlib.collections.QuadMesh at 0x7f41c4dd33a0>
#Kriging data to new grid
#raster = gl.DbGrid()
#raster.reset([2400,2600],[50,50],[625000,6870000],[0,0])
#gl.migrate(grid, raster, "spde.Thickness.kriging",2,[100,100],True)
# Export Kriging grid to Ascii for Raster format => raster.gridwrite.format("arcgis","filename.txt")
#Kri=raster.getColumn("Migrate.spde.Thickness.kriging")
#len(Kri)
#KriG= np.array(Kri)
#KriG = np.where(KriG > 1000, -999999, KriG)
#KriG= np.where(KriG==0, -999999, KriG)
#np.savetxt("filename.txt", KriG)