%%javascript
IPython.OutputArea.prototype._should_scroll = function(lines) {
return false;
}
import numpy as np
import plotly.graph_objects as go
import gstlearn.plot3D as gop
import IPython
import os
import urllib.request
from numpy import pi, cos, sin
import gstlearn as gl
Definition of the Meshing
gl.defineDefaultSpace(gl.ESpaceType.SN)
mesh = gl.MeshSphericalExt()
err = mesh.resetFromDb(None,None,triswitch = "-r4",verbose=False)
Display a white skin around the meshing
blank = gop.SurfaceOnMesh(mesh, opacity=1)
fig = go.Figure(data = [blank])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False, zaxis_visible=False )
f = fig.show()
We overlay the meshing
meshing = gop.Meshing(mesh)
fig = go.Figure(data = [blank, meshing])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False, zaxis_visible=False )
f = fig.show()
Drawing a polygon (we use the one containing the land boundaries)
url = 'https://soft.minesparis.psl.eu/gstlearn/data/boundaries/world.poly'
name, head = urllib.request.urlretrieve(url)
poly = gl.Polygons.createFromNF(name)
poly.display()
Polygons -------- Number of Polygon Sets = 451
boundaries = gop.PolygonOnSphere(poly)
equator = gop.Equator(width=5)
meridians = gop.Meridians(angle=20,color='blue')
parallels = gop.Parallels(angle=30,color='red')
pole = gop.Pole()
poleaxis = gop.PolarAxis()
fig = go.Figure(data = [blank,boundaries,equator,meridians,parallels,pole,poleaxis])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False, zaxis_visible=False )
f = fig.show()
Representing a function on the skin of the earth together with other decoration. The function is the result of a non-conditional simulation performed with SPDE on the Sphere.
model = gl.Model.createFromParam(gl.ECov.BESSEL_K,range=1500,param=1)
S = gl.ShiftOpCs(mesh,model)
Q = gl.PrecisionOpCs(S,model.getCova(0))
result = Q.simulateOne()
simu = gop.SurfaceOnMesh(mesh, intensity=result, opacity=1)
fig = go.Figure(data = [simu,boundaries,equator,meridians,parallels,pole,poleaxis])
fig.update_scenes(xaxis_visible=False, yaxis_visible=False, zaxis_visible=False )
f = fig.show()
We define the space dimension
ndim = 3
gl.defineDefaultSpace(gl.ESpaceType.RN, ndim)
Defining the output grid
nx = [61,81,61]
dx = [0.1, 0.1, 0.1]
x0 = [-3., -4., -6.]
grid = gl.DbGrid.create(nx=nx, dx=dx, x0=x0)
x = grid.getCoordinates(0)
y = grid.getCoordinates(1)
z = grid.getCoordinates(2)
val = x*x + y*y + z*z
grid.addColumns(val,"Data",gl.ELoc.Z)
glimits = grid.getRange("Data")
Defining a Data Set with Gradient and Tangent components
nech = 5
coormin = grid.getCoorMinimum()
coormax = grid.getCoorMaximum()
db = gl.Db.createFromBox(nech, coormin, coormax)
np.random.seed(123)
# Data
uid = db.addColumns(np.random.uniform(10.,20.,nech), "Data", gl.ELoc.Z)
# Gradient components
uid = db.addColumns(np.random.normal(0, 1, nech),"gx",gl.ELoc.G,0)
uid = db.addColumns(np.random.normal(0, 1, nech),"gy",gl.ELoc.G,1)
uid = db.addColumns(np.random.normal(0, 1, nech),"gz",gl.ELoc.G,2)
# Tangent components
uid = db.addColumns(np.random.normal(0, 1, nech),"tx",gl.ELoc.TGTE,0)
uid = db.addColumns(np.random.normal(0, 1, nech),"ty",gl.ELoc.TGTE,1)
uid = db.addColumns(np.random.normal(0, 1, nech),"tz",gl.ELoc.TGTE,2)
3-D Visualization
levels = [5., 25.]
surf1 = gop.IsoSurfaceOnDbGrid(grid, "Data", useSel=False, isomin=levels[0], isomax=levels[0])
surf2 = gop.IsoSurfaceOnDbGrid(grid, "Data", useSel=False, isomin=levels[1], isomax=levels[1])
point = gop.PointDb(db, size=5, name_color = "Data")
gradient = gop.GradientDb(db,size=0.5,colorscale='blues',sizemode='absolute')
tangent = gop.TangentDb(db,size=0.5,colorscale='gray',sizemode='absolute')
fig = go.Figure(data = [ surf1, surf2, point, gradient, tangent])
f = fig.show()