Global variables
verbose = TRUE
graphics = TRUE
OptCst_define(ECst_NTCOL(),6)
## NULL
The data are stored in a CSV format in the file called Pollution.dat
At this stage: - it is not possible to pass the list of variable names c(“X”,“Y”). - to pass the FLAGS for DbStringFormat (they are not an ENUM)
dlfile = "https://soft.minesparis.psl.eu/gstlearn/data/Pollution/Pollution.dat"
filepath = "Pollution.dat"
download.file(dlfile, filepath)
mydb = Db_createFromCSV(filepath,CSVformat())
err = mydb$setLocator("X",ELoc_X(),0)
err = mydb$setLocator("Y",ELoc_X(),1)
err = mydb$setLocator("Zn",ELoc_Z())
if (verbose)
{
dbfmt = DbStringFormat()
dbfmt$setFlags(flag_extend = TRUE)
mydb$display(dbfmt)
}
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 5
## Maximum Number of UIDs = 5
## Total number of samples = 102
##
## Data Base Extension
## -------------------
## Coor #1 - Min = 109.850 - Max = 143.010 - Ext = 33.16
## Coor #2 - Min = 483.660 - Max = 513.040 - Ext = 29.38
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = z1
## Column = 4 - Name = Pb - Locator = p1
## NULL
Accessing to the variable names
cat("List of all variable names =",mydb$getAllNames())
## List of all variable names = rank X Y Zn Pb
Extracting the vector containing the Zn variable in order to perform a selection
tabZn = mydb$getColumn("Zn")
selZn = as.numeric(tabZn < 20)
mydb$addSelection(selZn,"sel")
## [1] 5
mydb$setLocator('Pb',ELoc_Z())
## NULL
if (verbose)
mydb$display()
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 6
## Maximum Number of UIDs = 6
## Total number of samples = 102
## Number of active samples = 99
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = NA
## Column = 4 - Name = Pb - Locator = z1
## Column = 5 - Name = sel - Locator = sel
## NULL
Display my Data (with samples represented by color and size)
if (graphics)
ggplot() + plot(mydb,name_color="Pb") + plot.decoration(title="Data Set")
We first define the geometry of the variogram calculations
myVarioParamOmni = VarioParam()
mydir = DirParam_create(npas=10,dpas=1.)
myVarioParamOmni$addDir(mydir)
## NULL
We use the variogram definition in order to calculate the variogram cloud.
dbcloud = db_variogram_cloud(db=mydb, varioparam=myVarioParamOmni)
We recall that the Variogram cloud is calculated by filling an underlying grid where each cell is painted according to the number of pairs at the given distance and given variability. Representing the variogram cloud.
if (graphics)
ggplot() + plot(dbcloud,name_raster="Cloud*") + plot.decoration(title="Variogram Cloud")
Calculating the experimental omni-directional variogram
myVarioOmni = Vario(myVarioParamOmni,mydb)
err = myVarioOmni$compute(ECalcVario_VARIOGRAM())
if (verbose)
myVarioOmni$display()
##
## Variogram characteristics
## =========================
## Number of variable(s) = 1
## Number of direction(s) = 1
## Space dimension = 2
## Variance-Covariance Matrix 2.881
##
## Direction #1
## ------------
## Number of lags = 10
## Direction coefficients = 1.000 0.000
## Direction angles (degrees) = 0.000 0.000
## Tolerance on direction = 90.000 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 0 3.000 0.389 0.462
## 1 123.000 1.081 1.495
## 2 183.000 2.038 1.620
## 3 205.000 3.006 2.526
## 4 231.000 4.013 2.240
## 5 229.000 5.036 2.524
## 6 198.000 5.962 2.396
## 7 187.000 7.000 2.708
## 8 204.000 7.996 2.772
## 9 184.000 8.990 2.868
## NULL
The variogram is represented graphically for a quick check
if (graphics)
ggplot() + plot.varmod(myVarioOmni) +
plot.decoration(title="Omni-directional Variogram for Pb")
Calculate a variogram in several directions
myvarioParam = VarioParam()
mydirs = DirParam_createMultiple(ndir=4, npas=10, dpas=1.)
myvarioParam$addMultiDirs(mydirs)
## NULL
myvario = Vario(myvarioParam,mydb)
myvario$compute(ECalcVario_VARIOGRAM())
## [1] 0
if (verbose)
myvario$display()
##
## Variogram characteristics
## =========================
## Number of variable(s) = 1
## Number of direction(s) = 4
## Space dimension = 2
## Variance-Covariance Matrix 2.881
##
## Direction #1
## ------------
## Number of lags = 10
## Direction coefficients = 1.000 0.000
## Direction angles (degrees) = 0.000 0.000
## Tolerance on direction = 22.500 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 0 1.000 0.410 0.180
## 1 29.000 1.094 1.634
## 2 47.000 2.079 1.415
## 3 53.000 3.003 2.824
## 4 63.000 3.999 2.348
## 5 66.000 5.035 2.319
## 6 60.000 5.978 3.115
## 7 52.000 7.045 2.746
## 8 52.000 8.020 3.927
## 9 37.000 8.980 2.554
##
## Direction #2
## ------------
## Number of lags = 10
## Direction coefficients = 0.707 0.707
## Direction angles (degrees) = 45.000 0.000
## Tolerance on direction = 22.500 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 0 1.000 0.344 0.080
## 1 31.000 1.051 1.113
## 2 50.000 1.960 1.890
## 3 62.000 2.999 2.443
## 4 58.000 4.014 2.701
## 5 51.000 5.016 2.702
## 6 36.000 5.999 1.833
## 7 37.000 7.015 2.130
## 8 50.000 7.997 2.060
## 9 53.000 8.995 2.381
##
## Direction #3
## ------------
## Number of lags = 10
## Direction coefficients = 0.000 1.000
## Direction angles (degrees) = 90.000 0.000
## Tolerance on direction = 22.500 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 1 32.000 1.149 1.631
## 2 39.000 2.080 1.670
## 3 39.000 2.979 2.511
## 4 48.000 4.012 2.120
## 5 51.000 5.029 3.055
## 6 47.000 5.939 2.856
## 7 49.000 6.965 2.386
## 8 42.000 7.952 2.708
## 9 41.000 9.018 2.320
##
## Direction #4
## ------------
## Number of lags = 10
## Direction coefficients = -0.707 0.707
## Direction angles (degrees) = 135.000 0.000
## Tolerance on direction = 22.500 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 0 1.000 0.411 1.125
## 1 31.000 1.028 1.606
## 2 47.000 2.044 1.496
## 3 51.000 3.040 2.330
## 4 62.000 4.028 1.791
## 5 61.000 5.058 2.155
## 6 55.000 5.939 1.587
## 7 49.000 6.975 3.425
## 8 60.000 8.004 2.408
## 9 53.000 8.972 3.996
## NULL
if (graphics)
ggplot() + plot.varmod(myvario) +
plot.decoration(title="Multi-Directional Variogram of Pb")
Calculating the Variogram Map
myvmap = db_vmap_compute(db=mydb,calcul_type=ECalcVario_VARIOGRAM(),nxx=c(20,20))
if (verbose)
myvmap$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 5
## Maximum Number of UIDs = 5
## Total number of samples = 1681
##
## Grid characteristics:
## ---------------------
## Origin : -33.160 -29.380
## Mesh : 1.658 1.469
## Number : 41 41
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = x1 - Locator = x1
## Column = 2 - Name = x2 - Locator = x2
## Column = 3 - Name = VMAP.Pb.Var - Locator = z1
## Column = 4 - Name = VMAP.Pb.Nb - Locator = NA
## NULL
if (graphics)
ggplot() + plot(myvmap, name_raster="*Var") + plot.decoration(title="Variogram Map")
Fitting a Model. We call the Automatic Fitting procedure providing the list of covariance functions to be tested.
mymodel = Model_createFromDb(mydb)
err = mymodel$fit(vario=myvario,types=ECov_fromKeys(c("EXPONENTIAL","SPHERICAL")))
Visualizing the resulting model, overlaid on the experimental variogram
if (graphics)
ggplot() + plot.varmod(myvario,mymodel) + plot.decoration(title="Model for Pb")
We can impose some constraints on the parameters during the fit. For instance here, we impose an equality constraint on the range (range = 1).
myModelConstrained = Model_createFromDb(mydb)
constr = Constraints()
paramid = CovParamId(0,0,EConsElem_RANGE(),0,0)
constr$addItem(ConsItem(paramid,EConsType_EQUAL(),1.))
## NULL
err = myModelConstrained$fit(vario=myVarioOmni,
types=ECov_fromKeys(c("EXPONENTIAL","SPHERICAL")),
constraints=constr)
myModelConstrained
##
## Model characteristics
## =====================
## Space dimension = 2
## Number of variable(s) = 1
## Number of basic structure(s) = 2
## Number of drift function(s) = 0
## Number of drift equation(s) = 0
##
## Covariance Part
## ---------------
## Exponential
## - Sill = 1.032
## - Range = 1.000
## - Theo. Range = 0.334
## Spherical
## - Sill = 1.605
## - Range = 5.880
## Total Sill = 2.638
We can impose inequality constraints by using EConsType.LOWER or EConsType.UPPER.
mymodel$addDrift(Drift1(mymodel$getContext()))
## NULL
if (verbose)
mymodel$display()
##
## Model characteristics
## =====================
## Space dimension = 2
## Number of variable(s) = 1
## Number of basic structure(s) = 2
## Number of drift function(s) = 1
## Number of drift equation(s) = 1
##
## Covariance Part
## ---------------
## Exponential
## - Sill = 1.035
## - Ranges = 1.786 0.366
## - Theo. Ranges = 0.596 0.122
## - Angles = 45.023 0.000
## - Rotation Matrix
## [, 0] [, 1]
## [ 0,] 0.707 -0.707
## [ 1,] 0.707 0.707
## Spherical
## - Sill = 1.621
## - Ranges = 7.051 5.132
## - Angles = 136.897 0.000
## - Rotation Matrix
## [, 0] [, 1]
## [ 0,] -0.730 -0.683
## [ 1,] 0.683 -0.730
## Total Sill = 2.656
##
## Drift Part
## ----------
## Universality Condition
## NULL
We initiate a Neigborhood (Moving with a small number of samples for Demonstration)
myneigh = NeighMoving_create(flag_xvalid=FALSE,nmaxi=6,radius=10)
if (verbose)
myneigh$display()
##
## Moving Neighborhood
## ===================
## Minimum number of samples = 1
## Maximum number of samples = 6
## Maximum horizontal distance = 10
## NULL
We must first create a Grid which covers the area of interest
mygrid = DbGrid_createCoveringDb(dbin=mydb,nx=c(80,72),dx=c(0.5,0.5),
x0=c(107.,481.),margin=c(2,2))
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 2
## Maximum Number of UIDs = 2
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## NULL
We can now test the neighborhood characteristics for each node of the previously defined grid.
err = test_neigh(mydb,mygrid,mymodel,myneigh)
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 7
## Maximum Number of UIDs = 7
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = z1
## NULL
We can visualize some of the newly created variables, such as:
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Neigh*Number")
p = p + plot.decoration(title="Number of Samples per Neighborhood")
ggPrint(p)
}
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Neigh*MaxDist")
p = p + plot.decoration(title="Maximum Distance per Neighborhood")
ggPrint(p)
}
We can now process the cross-validation step
err = xvalid(mydb,mymodel,myneigh)
if (verbose)
mydb$display()
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 8
## Maximum Number of UIDs = 8
## Total number of samples = 102
## Number of active samples = 99
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = NA
## Column = 4 - Name = Pb - Locator = NA
## Column = 5 - Name = sel - Locator = sel
## Column = 6 - Name = Xvalid.Pb.esterr - Locator = z1
## Column = 7 - Name = Xvalid.Pb.stderr - Locator = NA
## NULL
if (graphics)
{
p = ggplot()
p = p + plot.hist(mydb,"Xvalid.Pb.stderr")
p = p + plot.decoration(title="Histogram of Stdandrdized Errors")
ggPrint(p)
}
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
We now perform the Estimation by Ordinary Kriging. The Neighborhood is changed into a Unique Neighborhood.
mydb$setLocator("Pb",ELoc_Z())
## NULL
myneigh = NeighUnique_create()
err = kriging(mydb,mygrid,mymodel,myneigh)
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 9
## Maximum Number of UIDs = 9
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = NA
## Column = 7 - Name = Kriging.Pb.estim - Locator = z1
## Column = 8 - Name = Kriging.Pb.stdev - Locator = NA
## NULL
Visualizing the results
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Kriging.Pb.estim")
p = p + plot(mydb,name_size="Pb", color="yellow")
p = p + plot.decoration(title="Estimate of Pb")
ggPrint(p)
}
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Kriging.Pb.stdev", show.legend.raster=TRUE)
p = p + plot(mydb,"Pb", color="yellow", flagCst=TRUE)
p = p + plot.decoration(title="St. Deviation of Pb")
ggPrint(p)
}
We must first transform the Data into Gaussian
myanamPb = AnamHermite_create(nbpoly=30)
err = myanamPb$fitFromLocator(mydb)
if (verbose)
myanamPb
##
## Hermitian Anamorphosis
## ----------------------
## Minimum absolute value for Y = -2.7
## Maximum absolute value for Y = 2.6
## Minimum absolute value for Z = 3.0029
## Maximum absolute value for Z = 12.9777
## Minimum practical value for Y = -2.7
## Maximum practical value for Y = 2.6
## Minimum practical value for Z = 3.0029
## Maximum practical value for Z = 12.9777
## Mean = 5.65758
## Variance = 2.86296
## Number of Hermite polynomials = 30
## Normalized coefficients for Hermite polynomials (punctual variable)
## [, 0] [, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
## [ 0,] 5.658 -1.625 0.440 -0.069 -0.017 0.082 -0.061
## [ 7,] 0.001 0.036 -0.044 0.004 0.047 -0.030 -0.029
## [ 14,] 0.037 0.007 -0.031 0.010 0.018 -0.019 -0.003
## [ 21,] 0.019 -0.010 -0.014 0.019 0.006 -0.023 0.004
## [ 28,] 0.022 -0.013
We can produce the Gaussian Anamorphosis graphically within its definition domain.
if (graphics)
ggplot() + plot(myanamPb)
The next step consists in translating the target variable (‘Pb’) into its Gaussian transform
mydb$setLocator("Pb",ELoc_Z())
## NULL
err = myanamPb$rawToGaussianByLocator(mydb)
if (verbose)
mydb$display()
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 9
## Maximum Number of UIDs = 9
## Total number of samples = 102
## Number of active samples = 99
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = NA
## Column = 4 - Name = Pb - Locator = NA
## Column = 5 - Name = sel - Locator = sel
## Column = 6 - Name = Xvalid.Pb.esterr - Locator = NA
## Column = 7 - Name = Xvalid.Pb.stderr - Locator = NA
## Column = 8 - Name = Y.Pb - Locator = z1
## NULL
We quickly calculate experimental (omni-directional) variograms using the already defined directions.
myvarioParam = VarioParam()
mydir = DirParam_create(npas=10,dpas=1.)
myvarioParam$addDir(mydir)
## NULL
myVario = Vario(myvarioParam,mydb)
err = myvario$compute(ECalcVario_VARIOGRAM())
We fit the model by automatic fit (with the constraints that the total sill be equal to 1).
mymodelG = Model_createFromDb(mydb)
err = mymodelG$fit(myvario,types=ECov_fromKeys(c("EXPONENTIAL")))
if (graphics)
ggplot() + plot.varmod(myvario,mymodelG) + plot.decoration(title="Model for Gaussian Pb")
We perform a set of 10 conditional simulations using the Turning Bands Method.
err = simtub(mydb,mygrid,mymodel,myneigh,nbsimu=10)
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 19
## Maximum Number of UIDs = 19
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = NA
## Column = 7 - Name = Kriging.Pb.estim - Locator = NA
## Column = 8 - Name = Kriging.Pb.stdev - Locator = NA
## Column = 9 - Name = Simu.Y.Pb.1 - Locator = z1
## Column = 10 - Name = Simu.Y.Pb.2 - Locator = z2
## Column = 11 - Name = Simu.Y.Pb.3 - Locator = z3
## Column = 12 - Name = Simu.Y.Pb.4 - Locator = z4
## Column = 13 - Name = Simu.Y.Pb.5 - Locator = z5
## Column = 14 - Name = Simu.Y.Pb.6 - Locator = z6
## Column = 15 - Name = Simu.Y.Pb.7 - Locator = z7
## Column = 16 - Name = Simu.Y.Pb.8 - Locator = z8
## Column = 17 - Name = Simu.Y.Pb.9 - Locator = z9
## Column = 18 - Name = Simu.Y.Pb.10 - Locator = z10
## NULL
Some statistics on the Conditional simulations in Gaussian scale
if (verbose)
err = mygrid$statisticsByLocator(locatorType = ELoc_Z(),
opers = EStatOption_fromKeys(c("MEAN","STDV","MINI","MAXI")))
## MEAN STDV MINI MAXI
## Simu.Y.Pb.1 -0.052 1.582 -6.234 6.963
## Simu.Y.Pb.2 0.081 1.451 -5.167 6.113
## Simu.Y.Pb.3 0.133 1.529 -5.363 5.639
## Simu.Y.Pb.4 0.453 1.478 -6.322 5.836
## Simu.Y.Pb.5 -0.084 1.577 -6.403 5.578
## Simu.Y.Pb.6 0.316 1.551 -4.816 6.297
## Simu.Y.Pb.7 0.185 1.598 -6.441 6.127
## Simu.Y.Pb.8 0.705 1.599 -4.713 7.175
## Simu.Y.Pb.9 0.159 1.639 -6.660 7.135
## Simu.Y.Pb.10 0.310 1.553 -5.955 4.807
We visualize a conditional simulation in Gaussian scale
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Simu.Y.Pb.1")
p = p + plot(mydb,"Pb")
p = p + plot.decoration(title="One Simulation of Pb in Gaussian Scale")
ggPrint(p)
}
We turn the Gaussian conditional simulations into Raw scale (using the Anamorphosis back transform) and get rid of the Gaussian conditional simulations.
err = myanamPb$gaussianToRaw(mygrid,name="Simu.Y.*")
mygrid$deleteColumn("Simu.Y.*")
## NULL
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 19
## Maximum Number of UIDs = 29
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = NA
## Column = 7 - Name = Kriging.Pb.estim - Locator = NA
## Column = 8 - Name = Kriging.Pb.stdev - Locator = NA
## Column = 9 - Name = Z.Simu.Y.Pb.1 - Locator = z1
## Column = 10 - Name = Z.Simu.Y.Pb.2 - Locator = z2
## Column = 11 - Name = Z.Simu.Y.Pb.3 - Locator = z3
## Column = 12 - Name = Z.Simu.Y.Pb.4 - Locator = z4
## Column = 13 - Name = Z.Simu.Y.Pb.5 - Locator = z5
## Column = 14 - Name = Z.Simu.Y.Pb.6 - Locator = z6
## Column = 15 - Name = Z.Simu.Y.Pb.7 - Locator = z7
## Column = 16 - Name = Z.Simu.Y.Pb.8 - Locator = z8
## Column = 17 - Name = Z.Simu.Y.Pb.9 - Locator = z9
## Column = 18 - Name = Z.Simu.Y.Pb.10 - Locator = z10
## NULL
We calculate some statistics on the Conditional Simulations in Raw scale.
if (verbose)
err = mygrid$statisticsByLocator(locatorType = ELoc_Z(),
opers = EStatOption_fromKeys(c("MEAN","STDV","MINI","MAXI")))
## MEAN STDV MINI MAXI
## Z.Simu.Y.Pb.1 5.965 2.647 3.003 12.978
## Z.Simu.Y.Pb.2 6.113 2.550 3.003 12.978
## Z.Simu.Y.Pb.3 6.238 2.703 3.003 12.978
## Z.Simu.Y.Pb.4 6.777 2.817 3.003 12.978
## Z.Simu.Y.Pb.5 5.937 2.599 3.003 12.978
## Z.Simu.Y.Pb.6 6.568 2.858 3.003 12.978
## Z.Simu.Y.Pb.7 6.384 2.829 3.003 12.978
## Z.Simu.Y.Pb.8 7.270 3.087 3.003 12.978
## Z.Simu.Y.Pb.9 6.362 2.862 3.003 12.978
## Z.Simu.Y.Pb.10 6.575 2.851 3.003 12.978
We visualize a Conditional Simulation in Raw Scale
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Z.Simu.Y.Pb.1")
p = p + plot(mydb,"Pb")
p = p + plot.decoration(title="One simulation of Pb in Raw Scale")
ggPrint(p)
}
Let us now average the conditional simulations in order to have a comparison with the estimation by kriging.
err = mygrid$statisticsByLocator(locatorType = ELoc_Z(),
opers = EStatOption_fromKeys(c("MEAN")),
flagStoreInDb = TRUE,
verbose = FALSE)
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 20
## Maximum Number of UIDs = 30
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = NA
## Column = 7 - Name = Kriging.Pb.estim - Locator = NA
## Column = 8 - Name = Kriging.Pb.stdev - Locator = NA
## Column = 9 - Name = Z.Simu.Y.Pb.1 - Locator = NA
## Column = 10 - Name = Z.Simu.Y.Pb.2 - Locator = NA
## Column = 11 - Name = Z.Simu.Y.Pb.3 - Locator = NA
## Column = 12 - Name = Z.Simu.Y.Pb.4 - Locator = NA
## Column = 13 - Name = Z.Simu.Y.Pb.5 - Locator = NA
## Column = 14 - Name = Z.Simu.Y.Pb.6 - Locator = NA
## Column = 15 - Name = Z.Simu.Y.Pb.7 - Locator = NA
## Column = 16 - Name = Z.Simu.Y.Pb.8 - Locator = NA
## Column = 17 - Name = Z.Simu.Y.Pb.9 - Locator = NA
## Column = 18 - Name = Z.Simu.Y.Pb.10 - Locator = NA
## Column = 19 - Name = Stats.MEAN - Locator = z1
## NULL
Displaying the average of the Conditional Simulations
if (graphics)
{
p = ggplot()
p = p + plot(mygrid,name_raster="Stats*MEAN")
p = p + plot(mydb,"Pb")
p = p + plot.decoration(title="Mean of Pb simulations")
ggPrint(p)
}
The Gaussian transform of the Pb variable has already been calculated. It suffices to perform the Gaussian transform of the Zn variable.
mydb$setLocator("Zn",ELoc_Z())
## NULL
myanamZn = AnamHermite(nbpoly=30)
myanamZn$fit(mydb, "Zn")
## [1] 0
if (verbose)
myanamZn
##
## Hermitian Anamorphosis
## ----------------------
## Minimum absolute value for Y = -2.5
## Maximum absolute value for Y = 2.6
## Minimum absolute value for Z = 1.1469
## Maximum absolute value for Z = 12.1276
## Minimum practical value for Y = -2.5
## Maximum practical value for Y = 2.6
## Minimum practical value for Z = 1.1469
## Maximum practical value for Z = 12.1276
## Mean = 2.88061
## Variance = 2.76263
## Number of Hermite polynomials = 30
## Normalized coefficients for Hermite polynomials (punctual variable)
## [, 0] [, 1] [, 2] [, 3] [, 4] [, 5] [, 6]
## [ 0,] 2.881 -1.277 0.877 -0.447 -0.095 0.294 -0.121
## [ 7,] -0.087 0.134 -0.029 -0.087 0.069 0.034 -0.065
## [ 14,] 0.005 0.044 -0.026 -0.020 0.034 0.001 -0.033
## [ 21,] 0.010 0.027 -0.016 -0.019 0.016 0.012 -0.014
## [ 28,] -0.005 0.011
if (graphics)
{
p = ggplot()
p = p + plot(myanamZn)
p = p + plot.decoration(title="Gaussian Anamorphosis for Zn")
ggPrint(p)
}
We convert the raw data into its Gaussian equivalent
mydb$setLocator("Zn",ELoc_Z())
## NULL
err = myanamZn$rawToGaussianByLocator(mydb)
if (verbose)
mydb$display()
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 10
## Maximum Number of UIDs = 20
## Total number of samples = 102
## Number of active samples = 99
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = NA
## Column = 4 - Name = Pb - Locator = NA
## Column = 5 - Name = sel - Locator = sel
## Column = 6 - Name = Xvalid.Pb.esterr - Locator = NA
## Column = 7 - Name = Xvalid.Pb.stderr - Locator = NA
## Column = 8 - Name = Y.Pb - Locator = NA
## Column = 9 - Name = Y.Zn - Locator = z1
## NULL
We now perform the multivariate variogram calculation
mydb$setLocator("Y.Pb",ELoc_Z(),0)
## NULL
mydb$setLocator("Y.Zn",ELoc_Z(),1)
## NULL
myvario = Vario(myvarioParam,mydb)
err = myvario$compute(ECalcVario_VARIOGRAM())
mymodelM = Model_createFromDb(mydb)
err = mymodelM$fit(myvario,ECov_fromKeys(c("EXPONENTIAL")))
if (graphics)
{
p = ggplot()
p = p + plot.varmod(myvario,mymodelM)
p = p + plot.decoration(title="Multivariate Model")
ggPrint(p)
}
We perform 10 bivariate conditional simulations (deleting the previous monovariate simulation outcomes first for better legibility).
mygrid$deleteColumn("Z.Simu*")
## NULL
err = simtub(mydb,mygrid,mymodelM,myneigh,nbsimu=10)
if (verbose)
mygrid$display()
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 30
## Maximum Number of UIDs = 50
## Total number of samples = 5913
##
## Grid characteristics:
## ---------------------
## Origin : 105.000 479.000
## Mesh : 0.500 0.500
## Number : 81 73
##
## Variables
## ---------
## Column = 0 - Name = x1 - Locator = x1
## Column = 1 - Name = x2 - Locator = x2
## Column = 2 - Name = Neigh.Pb.Number - Locator = NA
## Column = 3 - Name = Neigh.Pb.MaxDist - Locator = NA
## Column = 4 - Name = Neigh.Pb.MinDist - Locator = NA
## Column = 5 - Name = Neigh.Pb.NbNESect - Locator = NA
## Column = 6 - Name = Neigh.Pb.NbCESect - Locator = NA
## Column = 7 - Name = Kriging.Pb.estim - Locator = NA
## Column = 8 - Name = Kriging.Pb.stdev - Locator = NA
## Column = 9 - Name = Stats.MEAN - Locator = NA
## Column = 10 - Name = Simu.Y.Pb.1 - Locator = z1
## Column = 11 - Name = Simu.Y.Pb.2 - Locator = z2
## Column = 12 - Name = Simu.Y.Pb.3 - Locator = z3
## Column = 13 - Name = Simu.Y.Pb.4 - Locator = z4
## Column = 14 - Name = Simu.Y.Pb.5 - Locator = z5
## Column = 15 - Name = Simu.Y.Pb.6 - Locator = z6
## Column = 16 - Name = Simu.Y.Pb.7 - Locator = z7
## Column = 17 - Name = Simu.Y.Pb.8 - Locator = z8
## Column = 18 - Name = Simu.Y.Pb.9 - Locator = z9
## Column = 19 - Name = Simu.Y.Pb.10 - Locator = z10
## Column = 20 - Name = Simu.Y.Zn.1 - Locator = z11
## Column = 21 - Name = Simu.Y.Zn.2 - Locator = z12
## Column = 22 - Name = Simu.Y.Zn.3 - Locator = z13
## Column = 23 - Name = Simu.Y.Zn.4 - Locator = z14
## Column = 24 - Name = Simu.Y.Zn.5 - Locator = z15
## Column = 25 - Name = Simu.Y.Zn.6 - Locator = z16
## Column = 26 - Name = Simu.Y.Zn.7 - Locator = z17
## Column = 27 - Name = Simu.Y.Zn.8 - Locator = z18
## Column = 28 - Name = Simu.Y.Zn.9 - Locator = z19
## Column = 29 - Name = Simu.Y.Zn.10 - Locator = z20
## NULL
We back-transform each set of simulation outcomes using its own Gaussian Anamorphosis function. Finally we delete the Gaussian variables and ask for the statistics on the simulated variables in the Raw Scale.
err = myanamZn$gaussianToRaw(mygrid,"Simu.Y.Zn*")
err = myanamPb$gaussianToRaw(mygrid,"Simu.Y.Pb*")
mygrid$deleteColumn("Simu.Y*")
## NULL
if (verbose)
err = mygrid$statisticsByLocator(locatorType = ELoc_Z(),
opers = EStatOption_fromKeys(c("MEAN","STDV","MINI","MAXI")))
## MEAN STDV MINI MAXI
## Z.Simu.Y.Pb.1 5.854 1.880 3.003 12.978
## Z.Simu.Y.Pb.2 5.731 1.743 3.003 12.978
## Z.Simu.Y.Pb.3 5.630 1.681 3.003 12.978
## Z.Simu.Y.Pb.4 5.811 1.906 3.003 12.978
## Z.Simu.Y.Pb.5 5.724 1.728 3.003 12.978
## Z.Simu.Y.Pb.6 5.717 1.805 3.003 12.978
## Z.Simu.Y.Pb.7 5.922 1.825 3.003 12.978
## Z.Simu.Y.Pb.8 5.742 1.803 3.003 12.978
## Z.Simu.Y.Pb.9 5.788 1.841 3.003 12.978
## Z.Simu.Y.Pb.10 5.778 1.774 3.003 12.978
We compare the initial variable ‘Pb’ with a set of disjoint intervals. The ‘Pb’ values varying from 3 to 12.7, we consider three classes:
We first build the indicators for each class.
limits = Limits(c(NA, 4., 6., NA))
if (verbose)
limits$display()
## Bound( 1 ) : ] -Inf ; 4 [
## Bound( 2 ) : [ 4 ; 6 [
## Bound( 3 ) : [ 6 ; +Inf [
## NULL
We apply the set of limits previously defined in order to transform the input variable into Indicators of the different classes.
err = limits$toIndicator(mydb,name="Pb")
if (verbose)
mydb$display()
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 13
## Maximum Number of UIDs = 43
## Total number of samples = 102
## Number of active samples = 99
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = X - Locator = x1
## Column = 2 - Name = Y - Locator = x2
## Column = 3 - Name = Zn - Locator = NA
## Column = 4 - Name = Pb - Locator = NA
## Column = 5 - Name = sel - Locator = sel
## Column = 6 - Name = Xvalid.Pb.esterr - Locator = NA
## Column = 7 - Name = Xvalid.Pb.stderr - Locator = NA
## Column = 8 - Name = Y.Pb - Locator = NA
## Column = 9 - Name = Y.Zn - Locator = NA
## Column = 10 - Name = Indicator.Pb.Class.1 - Locator = z1
## Column = 11 - Name = Indicator.Pb.Class.2 - Locator = z2
## Column = 12 - Name = Indicator.Pb.Class.3 - Locator = z3
## NULL
We calculate the variogram of the Indicators for future use
myvarioindParam = VarioParam()
myvarioindParam$addDir(mydir)
## NULL
myvarioInd = Vario(myvarioindParam,mydb)
err = myvarioInd$compute(ECalcVario_VARIOGRAM())
if (verbose)
myvarioInd$display()
##
## Variogram characteristics
## =========================
## Number of variable(s) = 3
## Number of direction(s) = 1
## Space dimension = 2
## Variance-Covariance Matrix
## [, 0] [, 1] [, 2]
## [ 0,] 0.107 -0.062 -0.044
## [ 1,] -0.062 0.250 -0.187
## [ 2,] -0.044 -0.187 0.231
##
## Direction #1
## ------------
## Number of lags = 10
## Direction coefficients = 1.000 0.000
## Direction angles (degrees) = 0.000 0.000
## Tolerance on direction = 90.000 (degrees)
## Calculation lag = 1.000
## Tolerance on distance = 50.000 (Percent of the lag value)
##
## For variable 1
## Rank Npairs Distance Value
## 0 3.000 0.389 0.000
## 1 123.000 1.081 0.081
## 2 183.000 2.038 0.126
## 3 205.000 3.006 0.156
## 4 231.000 4.013 0.132
## 5 229.000 5.036 0.159
## 6 198.000 5.962 0.152
## 7 187.000 7.000 0.107
## 8 204.000 7.996 0.096
## 9 184.000 8.990 0.068
##
## For variables 2 and 1
## Rank Npairs Distance Value
## 0 3.000 0.389 0.000
## 1 123.000 1.081 -0.065
## 2 183.000 2.038 -0.077
## 3 205.000 3.006 -0.085
## 4 231.000 4.013 -0.093
## 5 229.000 5.036 -0.085
## 6 198.000 5.962 -0.061
## 7 187.000 7.000 -0.045
## 8 204.000 7.996 -0.042
## 9 184.000 8.990 -0.038
##
## For variable 2
## Rank Npairs Distance Value
## 0 3.000 0.389 0.167
## 1 123.000 1.081 0.199
## 2 183.000 2.038 0.221
## 3 205.000 3.006 0.251
## 4 231.000 4.013 0.292
## 5 229.000 5.036 0.258
## 6 198.000 5.962 0.237
## 7 187.000 7.000 0.254
## 8 204.000 7.996 0.228
## 9 184.000 8.990 0.234
##
## For variables 3 and 1
## Rank Npairs Distance Value
## 0 3.000 0.389 0.000
## 1 123.000 1.081 -0.016
## 2 183.000 2.038 -0.049
## 3 205.000 3.006 -0.071
## 4 231.000 4.013 -0.039
## 5 229.000 5.036 -0.074
## 6 198.000 5.962 -0.091
## 7 187.000 7.000 -0.061
## 8 204.000 7.996 -0.054
## 9 184.000 8.990 -0.030
##
## For variables 3 and 2
## Rank Npairs Distance Value
## 0 3.000 0.389 -0.167
## 1 123.000 1.081 -0.134
## 2 183.000 2.038 -0.145
## 3 205.000 3.006 -0.166
## 4 231.000 4.013 -0.199
## 5 229.000 5.036 -0.172
## 6 198.000 5.962 -0.177
## 7 187.000 7.000 -0.209
## 8 204.000 7.996 -0.186
## 9 184.000 8.990 -0.196
##
## For variable 3
## Rank Npairs Distance Value
## 0 3.000 0.389 0.167
## 1 123.000 1.081 0.150
## 2 183.000 2.038 0.194
## 3 205.000 3.006 0.237
## 4 231.000 4.013 0.238
## 5 229.000 5.036 0.247
## 6 198.000 5.962 0.268
## 7 187.000 7.000 0.270
## 8 204.000 7.996 0.240
## 9 184.000 8.990 0.226
## NULL
if (graphics)
multi.varmod(myvarioInd)
Then we build a categorical variable which gives the index of the class to which each sample belongs
err = limits$toCategory(mydb,"Pb")
if (verbose)
{
dbfmt = DbStringFormat()
dbfmt$setFlags(flag_resume = FALSE,
flag_vars = FALSE,
flag_stats = TRUE)
dbfmt$setNames("Category*")
dbfmt$setMode(mode=2) # Consider the variable categorical
mydb$display(dbfmt)
}
##
## Data Base Characteristics
## =========================
##
## Data Base Statistics
## --------------------
## 14 - Name Category.Pb - Locator z1
## Nb of data = 102
## Nb of active values = 99
## Class 1 = 12 ( 12.121%)
## Class 2 = 51 ( 51.515%)
## Class 3 = 36 ( 36.364%)
## NULL