Introduction

In this tutorial, we show how to simulated two dimensional stationary Gaussian Random Fields.

Its objectives are two folds:

All the fields are simulated on the domain \([0, 1]^2\) discretized on a regular grid.

To evaluate the conditioning algorithms, a realization of the random field, a non conditional simulation, is observed at points, uniformly scattered on the domain. These observations are used to condition a simulation.

Initialization and parameters

# simulation parameters
seed = 123
set.seed (seed)
# number of simulations for Monte-Carlo estimators
nsim = 10

# number of observations
ndat = 50

# parameters of the grid on [0,1]^2
nx = 101*c(1,1)
dx = 1/(nx-1)
x0 = c(0,0)

# parameters for the simulation algorithms
ntb = 1000 # number of band for the Turning Bands method (simtub)
tau = 0.01 # std. of the model observation process for SPDE (not used as default value is used instead)
matern_param = 1.0

Definition of the grid and the observation

# observations
dat = Db_create()
err = dat$setColumn(tab = runif(n=ndat), name = "x")
err = dat$setColumn(tab = runif(n=ndat), name = "y")
err = dat$setLocators(names = c("x", "y"), locatorType = ELoc_X(), cleanSameLocator = TRUE)
err = dat$setColumn(tab = rnorm(ndat), name = "Z", locatorType = ELoc_Z())
# grid for the simulations
grid    = DbGrid_create(nx,dx,x0)

# limits
limits <- list(XP = 1.0*c(0, 1, 1, 0, 0),
               YP = 1.0*c(0, 0, 1, 1, 0))
p_lim   = PolyElem(limits$XP, limits$YP)
pol_lim = Polygons()
err     = pol_lim$addPolyElem(p_lim)

# displays
p = plot.init(asp=1) + 
  plot.raster(grid) +
  plot.polygon(poly = pol_lim, color = "orange", fill = NA) +
  plot.symbol(dat, color = "red") +
  plot.decoration(xlab = "Easting", ylab = "Northing", 
                  title = "Limits of the simulations")
plot.end(p)

Auxiliary functions

# ------------------------------------------------------------
# QC of simulations
# ------------------------------------------------------------
qc_simulations <- function(grid, names, var_model, title, stat_keys) {
  nsim = length(names)
  
  # statistics
  tab = dbStatisticsMono(grid, names = names, opers = EStatOption_fromKeys(stat_keys))
  tab$setTitle(paste0(title, ": statistics"))
  tab$display()
  
  # histogram of simulation  #1
  i = 1
  hist(grid[names[i]], xlab = names[i], main = title, nc = 25, col = "orange", bg = "gray")
  # p = plot.init() + 
  #     plot.hist(grid, name = names[i], useSel = TRUE, col = "gray", fill = "orange") +
  #     plot.decoration(xlab = names[i], title = title)
  # plot.end(p)
  
  # base map
  p = plot.init(asp=1) + 
    plot.raster(grid, name = names[i], flagLegend = TRUE, legendName = "Y",
                palette = "Spectral") +
    # plot.symbol(dat, color = "red") +
    plot.decoration(xlab = "Easting", ylab = "Northing", 
                    title = title)
  plot.end(p)
  
  # variogram computations
  nlags = grid$getNXs()[1]/2
  varioparam = VarioParam_createMultipleFromGrid(grid, nlag = nlags)
  vario_list = list()
  for (i in 1:nsim) {
    vario = Vario(varioparam)
    err   = grid$setLocator(name = names[i], locatorType = ELoc_Z(), cleanSameLocator = TRUE)
    err   = vario$compute(grid)
    vario_list[[1 + length(vario_list)]] <- vario
  }
  
  # plot of mean variogram per direction
  err = qc_variogram(var_list = vario_list, var_param = varioparam, var_model = var_model, 
                     titre = title)
  
  NULL
}

# ------------------------------------------------------------
# plot of mean variogram per direction
# ------------------------------------------------------------
qc_variogram <- function(var_list, var_param, var_model, titre) {
  nsim = length(var_list)
  ndir = var_param$getNDir()
  # variogram matrices
  res_gg = list()
  for (idir in 1:ndir) {
    nlags = var_param$getDirParam(idir-1)$getNLag()
    gg_sim = matrix(NaN, nrow = nlags-1, ncol = nsim)
    for (i in 1:nsim) {
      gg_sim[,i] = var_list[[i]]$getGgVec(idir = idir-1, ivar = 0, jvar = 0)
    }
    res_gg[[1 + length(res_gg)]] <- gg_sim
  }
  
  # plot for each direction
  for (idir in 1:ndir) {
    
    nlags = var_param$getDirParam(idir-1)$getNLag()
    hh = dx[idir]*(1:(nlags-1))
    v_mean = apply(X = res_gg[[idir]], MARGIN = 1, FUN = mean)
    v_sd   = apply(X = res_gg[[idir]], MARGIN = 1, FUN = sd)
    
    # initial plot
    dir = var_param$getDirParam(idir - 1)$getCodirs()
    sdir = sprintf("Direction = [%1d, %1d]", dir[1], dir[2])
    plot(NULL, NULL, xlim = c(0, dx[idir]*nlags), 
         ylim = 1.2*c(0, ModelCovList_getTotalSill(var_model,ivar = 0, jvar = 0)),
         xlab = "Distance", ylab = "Variogram", main = paste0(titre, "\n", sdir),
         xaxs="i", yaxs="i")
    abline(h = 0, lty = 1, col = "black")
    abline(v = 0, lty = 1, col = "black")
    
    # experimental variogram
    lines(hh, v_mean, col = "orange", lw = 2)
    lines(hh, v_mean + 2 * v_sd, col = "orange", lty = 2)
    lines(hh, v_mean - 2 * v_sd, col = "orange", lty = 2)
    for (s in 1:nsim) {
      lines(hh, res_gg[[idir]][,s] , col = "gray", lty = 3)
    }
    
    # variogram model
    c00 = var_model$getTotalSill()
    abline(h  = c00, lty = 2, col = "skyblue")
    lines(hh, c00 - var_model$sample(h = hh, codir = var_param$getDirParam(idir - 1)$getCodirs()), 
          lty = 1, lw = 2, col = "skyblue")
    
    # legend TODO
    legend("bottomright", 
           legend = c("model", "mean variogram", "+/- 2 x Std.", "empirical variograms"),
           lty = c(1, 1, 2, 3), lw = c(2, 2, 1, 1), 
           col = c("skyblue", "orange", "orange", "gray")
    )
  } # loop over the directions
  invisible()
}

A single structure

err = grid$deleteColumns(names = c("*.nc.simu.*","kriging.Z*", 
                                   "SPDE.Z.kriging", "SPDE.Z.condSimu.*", "SPDE.Z.*"))
# a simple Matern's covariance model
model = Model()
err = model$addCovFromParam(type = ECov_fromKey("MATERN"), sill = 1, ranges = 1*c(0.1, 0.3), 
                            angles = c(30, 0), param = 1.0)

Non-conditional simulations

# non conditional simulations
err = simtub(dbin = NULL, dbout = grid, model = model, nbsimu = nsim, seed=seed, 
             neigh = NULL, nbtuba = ntb, namconv = NamingConvention("TB.nc.simu"))
lsr = law_set_random_seed(seed)
err = simulateSPDE(dbin = NULL, dbout = grid, model = model, nbsimu = nsim,
                   namconv = NamingConvention("SPDE.nc.simu"))
list_title = c("Using Turning Bands", "Using SPDE approach")
list_key   = c("TB", "SPDE")
for (i in seq_along(list_title)) {
  err = qc_simulations(grid = grid, 
                       names = paste(list_key[i], "nc.simu", 1:nsim, sep = "."), 
                       var_model = model, title = list_title[i], stat_keys = stat_keys)
}
##                    Number     Minimum     Maximum        Mean    St. Dev.
##  TB.nc.simu.1   10201.000      -3.536       3.309      -0.182       1.059
##  TB.nc.simu.2   10201.000      -2.902       3.549       0.044       1.005
##  TB.nc.simu.3   10201.000      -3.613       3.127       0.141       0.993
##  TB.nc.simu.4   10201.000      -2.744       2.571      -0.106       0.889
##  TB.nc.simu.5   10201.000      -3.337       3.464       0.119       1.027
##  TB.nc.simu.6   10201.000      -2.537       3.722       0.085       0.950
##  TB.nc.simu.7   10201.000      -2.765       3.772       0.228       1.026
##  TB.nc.simu.8   10201.000      -3.201       3.629      -0.029       0.993
##  TB.nc.simu.9   10201.000      -3.220       2.962      -0.128       0.831
## TB.nc.simu.10   10201.000      -4.238       3.951      -0.124       1.045

##                      Number     Minimum     Maximum        Mean    St. Dev.
##  SPDE.nc.simu.1   10201.000      -3.702       3.364      -0.121       1.085
##  SPDE.nc.simu.2   10201.000      -3.227       3.025      -0.108       0.949
##  SPDE.nc.simu.3   10201.000      -2.944       3.242       0.105       0.967
##  SPDE.nc.simu.4   10201.000      -3.139       3.242       0.015       0.951
##  SPDE.nc.simu.5   10201.000      -2.875       3.646       0.357       1.050
##  SPDE.nc.simu.6   10201.000      -3.115       2.953      -0.131       0.924
##  SPDE.nc.simu.7   10201.000      -2.877       3.815       0.454       1.001
##  SPDE.nc.simu.8   10201.000      -3.656       3.082      -0.094       0.892
##  SPDE.nc.simu.9   10201.000      -2.719       3.429      -0.078       0.983
## SPDE.nc.simu.10   10201.000      -3.706       2.940       0.193       0.933

Kriging

# simple kriging
err = model$delDrift(rank = 0)
err = model$setMean(mean = 0.0)
neigh = NeighUnique()
# kriging in unique neighborhood
err = kriging(dbin = dat, dbout = grid, model = model,
              neigh = neigh, 
              flag_est = TRUE, flag_std = TRUE, flag_varz = TRUE, 
              namconv = NamingConvention("kriging"))

err = krigingSPDE(dbin = dat, dbout = grid, model = model,
                  flag_est = TRUE, flag_std = FALSE, 
                  namconv = NamingConvention("SPDE"))
lsr = law_set_random_seed(seed)
err = simulateSPDE(dbin = dat, dbout = grid, model = model,
                   nbsimu = nsim, namconv = NamingConvention("SPDE"))

# cross plot for estimates (SPDE vs. kriging)
p = plot.init() + 
  plot.correlation(grid, namex = "kriging.Z.estim", namey = "SPDE.Z.estim", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "Simple Kriging", ylab = "SPDE estimate", title = "Mono structure")
plot.end(p)

# cross plot of kriging std. (SPDE vs. kriging)
nm_sims = grid$getNames(names = "SPDE.Z.*")
tab = matrix(grid$getColumns(names = nm_sims) , nrow = grid$getNSample(), 
             ncol = length(nm_sims))
estim = apply(X = tab, MARGIN = 1, FUN = mean)
stdev = apply(X = tab, MARGIN = 1, FUN = sd)
grid["SPDE.ZMC.estim"] = estim
grid["SPDE.ZMC.stdev"] = stdev

# conditional simulations
p1 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.1", palette = "Spectral")
p2 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.2", palette = "Spectral")
p3 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.3", palette = "Spectral")
p4 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.4", palette = "Spectral")
ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2)

# estimate by MC
p = plot.init() + 
  plot.correlation(grid, namex = "SPDE.Z.estim", namey = "SPDE.ZMC.estim", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "SPDE Kriging", ylab = "SPDE conditional exp.", 
                  title = "Mono structure")
plot.end(p)

# stdev
p = plot.init() + 
  plot.correlation(grid, namex = "kriging.Z.stdev", namey = "SPDE.ZMC.stdev", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "Simple Kriging Std.", ylab = "SPDE conditional Std.", 
                  title = "Mono structure")
plot.end(p)

# estimator
p1 = plot.init(asp=1) + 
  plot.raster(grid, name = "kriging.Z.estim", 
              palette = "Spectral", flagLegend = TRUE, legendName = "kriging") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
p2 = plot.init(asp=1) + 
  plot.raster(grid, name = "SPDE.Z.estim", 
              palette = "Spectral", flagLegend = TRUE, legendName = "SPDE") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
ggarrange(p1, p2, nrow = 1, ncol = 2)

# standard deviation
p1 = plot.init(asp=1) + 
  plot.raster(grid, name = "kriging.Z.stdev", 
              palette = "Spectral", flagLegend = TRUE, legendName = "kriging") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
p2 = plot.init(asp=1) + 
  plot.raster(grid, name = "SPDE.ZMC.stdev", 
              palette = "Spectral", flagLegend = TRUE, legendName = "SPDE") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
ggarrange(p1, p2, nrow = 1, ncol = 2)

Linear model of covariances

err = grid$deleteColumns(names = c("*.nc.simu.*","kriging.Z*", 
                                   "SPDE.Z.kriging", "SPDE.Z.condSimu.*", "SPDE.Z.*"))
# a covariance model defined as a sum of two Matern's covariance functions and a nugget effect 
model = Model()
err = model$addCovFromParam(type = ECov_fromKey("MATERN"), sill = 0.4, ranges = 1*c(0.1, 0.3), 
                            angles = c(30, 0), param = 1.0)
err = model$addCovFromParam(type = ECov_fromKey("MATERN"), sill = 0.5, ranges = 2*c(0.1, 0.3), 
                            angles = c(30, 0), param = 2.0)
err = model$addCovFromParam(ECov_NUGGET(), sill=0.1)

Non-conditional simulations

# non conditional simulations
err = simtub(dbin = NULL, dbout = grid, model = model, nbsimu = nsim, seed=seed, 
             neigh = NULL, nbtuba = ntb, namconv = NamingConvention("TB.nc.simu"))
lsr = law_set_random_seed(seed)
err = simulateSPDE(dbin = NULL, dbout = grid, model = model, nbsimu = nsim,
                   namconv = NamingConvention("SPDE.nc.simu"))
list_title = c("Using Turning Bands", "Using SPDE approach")
list_key   = c("TB", "SPDE")
for (i in seq_along(list_title)) {
  err = qc_simulations(grid = grid, 
                       names = paste(list_key[i], "nc.simu", 1:nsim, sep = "."), 
                       var_model = model, title = list_title[i], stat_keys = stat_keys)
}
##                    Number     Minimum     Maximum        Mean    St. Dev.
##  TB.nc.simu.1   10201.000      -3.736       3.410      -0.052       1.000
##  TB.nc.simu.2   10201.000      -2.932       4.197       0.615       1.124
##  TB.nc.simu.3   10201.000      -4.448       3.034      -0.074       1.038
##  TB.nc.simu.4   10201.000      -2.385       2.967       0.125       0.864
##  TB.nc.simu.5   10201.000      -2.922       3.147       0.205       0.951
##  TB.nc.simu.6   10201.000      -3.565       3.197      -0.141       0.912
##  TB.nc.simu.7   10201.000      -3.410       3.452       0.298       1.001
##  TB.nc.simu.8   10201.000      -3.822       3.094      -0.206       1.051
##  TB.nc.simu.9   10201.000      -3.700       3.307      -0.042       1.006
## TB.nc.simu.10   10201.000      -3.265       3.688       0.007       0.903

##                      Number     Minimum     Maximum        Mean    St. Dev.
##  SPDE.nc.simu.1   10201.000      -3.608       3.712       0.136       1.013
##  SPDE.nc.simu.2   10201.000      -3.172       2.867      -0.248       0.807
##  SPDE.nc.simu.3   10201.000      -3.097       3.630       0.092       0.979
##  SPDE.nc.simu.4   10201.000      -3.397       3.069      -0.207       0.975
##  SPDE.nc.simu.5   10201.000      -2.891       3.252      -0.012       0.857
##  SPDE.nc.simu.6   10201.000      -2.777       3.767       0.476       0.845
##  SPDE.nc.simu.7   10201.000      -3.454       2.861       0.023       0.888
##  SPDE.nc.simu.8   10201.000      -3.265       3.219       0.250       0.954
##  SPDE.nc.simu.9   10201.000      -2.389       3.520       0.105       0.854
## SPDE.nc.simu.10   10201.000      -2.702       3.200      -0.003       0.904

Kriging

# simple kriging
err = model$delDrift(rank = 0)
err = model$setMean(mean = 0.0)
neigh = NeighUnique()
# kriging in unique neighbourhood
err = kriging(dbin = dat, dbout = grid, model = model,
              neigh = neigh, 
              flag_est = TRUE, flag_std = TRUE, flag_varz = TRUE, 
              namconv = NamingConvention("kriging"))

err = krigingSPDE(dbin = dat, dbout = grid, model = model,
                  flag_est = TRUE, flag_std = FALSE, 
                  namconv = NamingConvention("SPDE"))
lsr = law_set_random_seed(seed)
err = simulateSPDE(dbin = dat, dbout = grid, model = model,
                   nbsimu = nsim, namconv = NamingConvention("SPDE"))

# cross plot for estimates (SPDE vs. kriging)
p = plot.init() + 
  plot.correlation(grid, namex = "kriging.Z.estim", namey = "SPDE.Z.estim", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "Simple Kriging", ylab = "SPDE estimate", title = "Multi structure")
plot.end(p)

# cross plot of kriging std. (SPDE vs. kriging)
nm_sims = grid$getNames(names = "SPDE.Z.*")
tab = matrix(grid$getColumns(names = nm_sims) , nrow = grid$getNSample(), ncol = length(nm_sims))
estim = apply(X = tab, MARGIN = 1, FUN = mean)
stdev = apply(X = tab, MARGIN = 1, FUN = sd)
grid["SPDE.ZMC.estim"] = estim
grid["SPDE.ZMC.stdev"] = stdev

# conditional simulations
p1 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.1", palette = "Spectral")
p2 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.2", palette = "Spectral")
p3 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.3", palette = "Spectral")
p4 = plot.init(asp=1) + plot.raster(grid, name = "SPDE.Z.4", palette = "Spectral")
ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2)

# estimate by MC
p = plot.init() + 
  plot.correlation(grid, namex = "SPDE.Z.estim", namey = "SPDE.ZMC.estim", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "SPDE Kriging", ylab = "SPDE conditional exp.", title = "Mono structure")
plot.end(p)

# stdev
p = plot.init() + 
  plot.correlation(grid, namex = "kriging.Z.stdev", namey = "SPDE.ZMC.stdev", 
                   flagDiag = TRUE, diagColor = "red", flagSameAxes = TRUE, bins=100) +
  plot.decoration(xlab = "Simple Kriging Std.", ylab = "SPDE conditional Std.", 
                  title = "Multi structure")
plot.end(p)

# estimator
p1 = plot.init(asp=1) + 
  plot.raster(grid, name = "kriging.Z.estim", 
              palette = "Spectral", flagLegend = TRUE, legendName = "kriging") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
p2 = plot.init(asp=1) + 
  plot.raster(grid, name = "SPDE.ZMC.estim", 
              palette = "Spectral", flagLegend = TRUE, legendName = "SPDE") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
ggarrange(p1, p2, nrow = 1, ncol = 2)

# standard deviation
p1 = plot.init(asp=1) + 
  plot.raster(grid, name = "kriging.Z.stdev", 
              palette = "Spectral", flagLegend = TRUE, legendName = "kriging") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
p2 = plot.init(asp=1) + 
  plot.raster(grid, name = "SPDE.ZMC.stdev", 
              palette = "Spectral", flagLegend = TRUE, legendName = "SPDE") +
  plot.decoration(xlab = "Easting", ylab = "Northing")
ggarrange(p1, p2, nrow = 1, ncol = 2)

References