In this preamble, we load the gstlearn library, and clean the workspace.
rm(list=ls())
library(gstlearn)
library(ggplot2)
library(ggpubr)
library(ggnewscale)
Then we download the data base dat
.
fileNF = loadData("Scotland", "Scotland_Temperatures.NF")
dat = Db_createFromNF(fileNF)
We also create a Db
object containing a grid covering the data points in the data base dat
. To do so, we start by displaying the minimal and maximal coordinates of the points in dat
using the getExtremas()
method from the Db
class.
dat$getExtremas()
## [[1]]
## [1] 78.2 460.7
##
## [[2]]
## [1] 530.4 1208.9
The first (resp. second) element of the list contains the min and max coordinates in the first (resp. second) space dimension. Based on this information, we create a grid covering all the points using the DbGrid_create
function. We specify the coordinates of the origin (i.e. lower left corner) of the grid (argument x0
), the step sizes in each dimension (argument dx
) and the number of points in each dimension (argument nx
).
grid = DbGrid_create(x0=c(65,530),dx=c(4.94, 4.96),nx=c(82,138))
We then print a summary of the content of the grid using the display
method of Db
class, which we supply with a DbStringFormat
object specifying that we would like information about the extent of the grid (argument flag_extend
in the DbStringFormat_createFromFlags
function).
dbfmt = DbStringFormat_createFromFlags(flag_extend=TRUE)
grid$display(dbfmt)
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 3
## Total number of samples = 11316
##
## Grid characteristics:
## ---------------------
## Origin : 65.000 530.000
## Mesh : 4.940 4.960
## Number : 82 138
##
## Data Base Extension
## -------------------
## Coor #1 - Min = 65.000 - Max = 465.140 - Ext = 400.14
## Coor #2 - Min = 530.000 - Max = 1209.520 - Ext = 679.52
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = x1 - Locator = x1
## Column = 2 - Name = x2 - Locator = x2
## NULL
We compute the experimental variogram vario2dir (in 2 directions) (cf. Variography for more details).
varioParamMulti = VarioParam_createMultiple(ndir=2, npas=15, dpas=15.)
vario2dir = Vario(varioParamMulti)
err = vario2dir$compute(dat)
We then the fit a model fitmod
fitmod = Model()
types = ECov_fromKeys(c("NUGGET","EXPONENTIAL","GAUSSIAN"))
err = fitmod$fit(vario2dir,types=types)
ggplot() + plot.varmod(vario2dir, fitmod)
To perform simple kriging, we use the function called kriging
. We specify:
Db
object containing the data points (argument dbin
) : the variable used for kriging is the (unique) variable of the data base with a z
locator (i.e. it should have locator z1
and the other variables should not have a locator starting with z
)Db
object containing the target points, i.e. the points where the kriging predictor will be computed (argument dbout
)Model
object containing the model used to define the kriging predictor (argument model
): in particular, the mean used to define the predictor is the one set in the Model
objectneigh
), eg. unique neighborhood (to use all the data points for each predictor) or moving neighborhood (to use only the data points in the vicinity of the target point in the prediction). This argument is defined using a "neighborhood" object (see example below).Additionally, it is possible to specify whether we wish to compute, at each target point, the kriging predictor (argument flag_est
, default=TRUE
), the kriging standard-deviation (argument flag_std
, default=TRUE
) and the kriging variance (argument flag_varz
, default=FALSE
).
The kriging
function then adds new variables to the Db
entered in the dbout
argument corresponding to these variables. The names of these newly created variables will start by Kriging
, but this prefix can be changed using the namconv
argument of the kriging function
In the next example, we perform a simple kriging prediction (with unique neighborhood) of the variable January_temp
in the dat
data base, on the grid defined in the grid
data base. To do so, we start by selecting the variable January_temp
in the dat
data base (i.e. we make ensure that it is the only variable with a z
locator).
dat$setLocator("January_temp",ELoc_Z())
## NULL
dat
##
## Data Base Characteristics
## =========================
##
## Data Base Summary
## -----------------
## File is organized as a set of isolated points
## Space dimension = 2
## Number of Columns = 5
## Total number of samples = 236
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = Longitude - Locator = x1
## Column = 2 - Name = Latitude - Locator = x2
## Column = 3 - Name = Elevation - Locator = NA
## Column = 4 - Name = January_temp - Locator = z1
We then create a "neighborhood" object corresponding to the specification of a unique neighborhood: this is done using the NeighUnique
function.
uniqueNeigh = NeighUnique()
We now call the kriging
function to perform the kriging prediction. We use the model fitmod
that we previously fitted on our data, require to compute the kriging predictor and its standard-deviation (but not its variance), and change the prefix of the newly created variables to "SK".
err = kriging(dbin=dat, dbout=grid, model=fitmod,
neigh=uniqueNeigh,
flag_est=TRUE, flag_std=TRUE, flag_varz=FALSE,
namconv=NamingConvention("SK")
)
We see that the kriging predictor and its standard deviation have been added to the grid
data base.
grid
##
## Data Base Grid Characteristics
## ==============================
##
## Data Base Summary
## -----------------
## File is organized as a regular grid
## Space dimension = 2
## Number of Columns = 5
## Total number of samples = 11316
##
## Grid characteristics:
## ---------------------
## Origin : 65.000 530.000
## Mesh : 4.940 4.960
## Number : 82 138
##
## Variables
## ---------
## Column = 0 - Name = rank - Locator = NA
## Column = 1 - Name = x1 - Locator = x1
## Column = 2 - Name = x2 - Locator = x2
## Column = 3 - Name = SK.January_temp.estim - Locator = z1
## Column = 4 - Name = SK.January_temp.stdev - Locator = NA
Finally, we plot the kriging prediction over the grid using the plot.grid
function and the data points.
p = ggDefaultGeographic()
p = p + plot.grid(grid,
flagLegendRaster = TRUE, palette="Spectral",legendNameRaster="°C")
p = p + plot.point(dat,flagCst = T,pch=18,cex=1.5)
p = p + plot.decoration(title="Simple Kriging over whole Grid")
ggPrint(p)
By default, the plotting function plots the variable with locator z1
, which in our case corresponds to the kriging predictor (as the kriging
function automatically assigns the locator z1
to it). To plot another variable, we can simply specify their name.
For instance, we can plot the kriging standard deviation using the following code.
p = ggDefaultGeographic()
p = p + plot.grid(grid,nameRaster="SK.January_temp.stdev",
flagLegendRaster = TRUE, palette="Spectral",legendNameRaster="°C")
p = p + plot.point(dat,flagCst = T,pch=18,cex=1.5)
p = p + plot.decoration(title="Simple Kriging std-dev over whole Grid")
ggPrint(p)
As mentioned above, the mean used in the simple kriging predictor is the one set in the Model
object supplied in the kriging
function. By default, this mean is zero. It can be changed using the setMean
method of the Model
object.
For instance, considering the model fitmod
previously fitted on the data, we can clone it (using the clone
method), and assign it a new mean (equal to 4) as follows.
fitmodSK = fitmod$clone()
err = fitmodSK$setMean(mean=4)
Then, simple kriging is performed using the same command as before, but with the newly created model.
err = kriging(dbin=dat, dbout=grid, model=fitmodSK,
neigh=uniqueNeigh,
flag_est=TRUE, flag_std=TRUE, flag_varz=FALSE,
namconv=NamingConvention("Mean4_SK")
)
Finally, we plot the new kriging prediction over the grid and the data points.
p = ggDefaultGeographic()
p = p + plot.grid(grid,
flagLegendRaster = TRUE, palette="Spectral",legendNameRaster="°C")
p = p + plot.point(dat,flagCst = T,pch=18,cex=1.5)
p = p + plot.decoration(title="Simple Kriging over whole Grid: Mean=4")
ggPrint(p)