gstlearn is a package developed by the Geostatistical Team of Mines ParisTech. It contains several well established geostatistical functions and methods and some prototypes based on ongoing research.
In each R session, you must load the gstlearn library
1+3
## [1] 4
exp(log(sqrt(2^2)))
## [1] 2
a = 1
b <- 3
a + b
## [1] 4
d = a + b
d
## [1] 4
d = 7
d
## [1] 7
ls()
rm(d)
ls()
q()
Save the workspace (y).
The content of your session is saved in the file .Rdata (with the .Rhistory) of your working directory.
Caution: these files are hidden.
To continue, you must relaunch R (and load gstlearn again).
b <- 3
class(b)
## [1] "numeric"
col = "blue"
class(col)
## [1] "character"
reponse=FALSE
class(reponse)
## [1] "logical"
a = 1
a < 2
## [1] TRUE
comp = a < 2
comp
## [1] TRUE
comp & reponse
## [1] FALSE
comp | reponse
## [1] TRUE
!comp
## [1] FALSE
a = 1
a == 1
## [1] TRUE
a != 1
## [1] FALSE
a > 1
## [1] FALSE
a >= 1
## [1] TRUE
x = c(1,9,2,9,4,5)
x
## [1] 1 9 2 9 4 5
class(x)
## [1] "numeric"
x[1]
## [1] 1
x[c(1,3)]
## [1] 1 2
x[-2]
## [1] 1 2 9 4 5
2:5*3
## [1] 6 9 12 15
x = c(1,9,2,9,4,5)
x[2:5]
## [1] 9 2 9 4
selection = x > 2
selection
## [1] FALSE TRUE FALSE TRUE TRUE TRUE
x[selection]
## [1] 9 9 4 5
Length of a vector
length(x)
## [1] 6
M = matrix(1:20,nrow=4,ncol=5)
M[2,1]
## [1] 2
M[2,1]=3
M[2,1]
## [1] 3
M[,1]
## [1] 1 3 3 4
M[2,]
## [1] 3 6 10 14 18
dim(M)
## [1] 4 5
data = data.frame(M)
class(data)
## [1] "data.frame"
data[,3]
## [1] 9 10 11 12
names(data)
## [1] "X1" "X2" "X3" "X4" "X5"
names(data) = c("A","B","C","D","E")
data
data
data$C
## [1] 9 10 11 12
data[data$A>1,]
Download the ASCII file called Scotland_Temperatures.csv and store it on your disk in the current working directory.
filename = loadData("Scotland", "Scotland_Temperatures.csv")
temperatures = read.csv(filename,header=TRUE,na="MISS")
class(temperatures)
names(temperatures)
set.seed(123)
rnorm(3)
## [1] -0.5604756 -0.2301775 1.5587083
x=c(3,4,7,4,2)
x
## [1] 3 4 7 4 2
sort(x)
## [1] 2 3 4 4 7
unique(x)
## [1] 3 4 7 2
x=c(3,4,7,4,2)
sum(x)
## [1] 20
mean(x)
## [1] 4
var(x)
## [1] 3.5
sd(x)
## [1] 1.870829
Search for help on the function image.
?image
To get some help on a class :
class?matrix
Function outer
A = c(2,4,10)
B = c(3,7)
outer(A,B,"-")
## [,1] [,2]
## [1,] -1 -5
## [2,] 1 -3
## [3,] 7 3
outer(A,B,"*")
## [,1] [,2]
## [1,] 6 14
## [2,] 12 28
## [3,] 30 70
Dimension and initialize a vector: numeric
Loop from 1 to 10: store loop index in a vector; then print the vector
tab = numeric(10)
for (i in 1:10)
{
tab[i] = i
}
print(tab)
## [1] 1 2 3 4 5 6 7 8 9 10
Generate a linear transform of the input argument
my.func = function(x,a=2,b=4)
{
y = a * x + b
y
}
Play my function
x = seq(0,20)
y = my.func(x)
plot(x,y,main="Plotting my function")