rm(list=ls())
library(gstlearn)
library(ggplot2)
library(ggpubr)
library(ggnewscale)
## Data points
fileNF = loadData("Scotland", "Scotland_Temperatures.NF")
dat = Db_createFromNF(fileNF)

## Target grid
fileNF = loadData("Scotland", "Scotland_Elevations.NF")
grid = DbGrid_createFromNF(fileNF)

p = ggplot()
p = p + plot.hist(dat,"January*")
p = p + plot.decoration(title="Temperatures")
ggPrint(p)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


anam = AnamHermite(30)
err = anam$fitFromLocator(dat)
err = anam$rawToGaussian(dat, "January_temp")
anam
## 
## Hermitian Anamorphosis
## ----------------------
## Minimum absolute value for Y  = -2.8
## Maximum absolute value for Y  = 2.7
## Minimum absolute value for Z  = 0.62599
## Maximum absolute value for Z  = 5.24756
## Minimum practical value for Y = -2.8
## Maximum practical value for Y = 2.7
## Minimum practical value for Z = 0.62599
## Maximum practical value for Z = 5.24756
## Mean                          = 2.81457
## Variance                      = 1.01677
## Number of Hermite polynomials = 30
## Normalized coefficients for Hermite polynomials (punctual variable)
##                [,  0]    [,  1]    [,  2]    [,  3]    [,  4]    [,  5]    [,  6]
##      [  0,]     2.815    -1.003     0.010     0.067     0.005     0.030    -0.007
##      [  7,]    -0.035     0.009     0.027    -0.011    -0.019     0.014     0.013
##      [ 14,]    -0.017    -0.008     0.019     0.004    -0.020    -0.001     0.020
##      [ 21,]    -0.002    -0.018     0.004     0.016    -0.005    -0.014     0.006
##      [ 28,]     0.011    -0.005

p = ggplot()
p = p + plot.XY(dat["Y.January_temp"], dat["January_temp"], flagLine=FALSE, flagPoint=TRUE)
p = p + plot.decoration(xlab="Gaussian", ylab="Raw")
ggPrint(p)


p = ggplot()
p = p + plot.hist(dat,"Y.January*")
p = p + plot.decoration(title="Temperatures (Gaussian scale)")
ggPrint(p)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


We calculate the experimental directional variogram of the gaussian scores and fit the Model (with the constraints that sill should be 1)

varioparam = VarioParam_createMultiple(ndir=2, npas=40, dpas=10)
vario_gauss2dir = Vario_create(varioparam)
err = vario_gauss2dir$compute(dat)

fitmodgauss = Model()
err = fitmodgauss$fit(vario_gauss2dir, 
                      types=ECov_fromKeys(c("NUGGET", "SPHERICAL","CUBIC")),
                      constraints = Constraints(1))
ggplot() + plot.varmod(vario_gauss2dir, fitmodgauss)


neighU = NeighUnique_create()

err = kriging(dat, grid, fitmodgauss, neighU)
p = ggDefaultGeographic()
p = p + plot(grid,"*estim")
p = p + plot(dat)
p = p + plot.decoration(title="Kriging of Gaussian scores")
ggPrint(p)


p = ggDefaultGeographic()
p = p + plot(grid,"*stdev")
p = p + plot(dat, flagCst=TRUE)
p = p + plot.decoration(title="St. Dev. of Gaussian scores")
ggPrint(p)


Use the Turning Bands method with 1000 simulations

selectivity = Selectivity_createByKeys(c("Z"), flag_est=TRUE, flag_std=TRUE)
err = ConditionalExpectation(grid, anam, selectivity, "K*.estim", "K*.stdev",
                             nbsimu=100,
                             namconv=NamingConvention("CE",FALSE,TRUE,FALSE))

p = ggDefaultGeographic()
p = p + plot(grid,"CE*estim")
p = p + plot(dat)
p = p + plot.decoration(title = "Conditional Expectation")
ggPrint(p)