This R Markdown document tests the utilities developed to compute the layer proportions for each selected cells of a three dimensional grid. The \(N\) layers are defined by the elevation of their top limit.
knitr::opts_chunk$set(echo = TRUE)
rm(list=ls())
library(gstlearn)
##
## Attaching package: 'gstlearn'
## The following objects are masked from 'package:base':
##
## message, toString
OptCst_defineByKey("ASP",0)
## NULL
library(ggplot2)
library(ggpubr)
library(ggnewscale)
set.seed(43243)
opers = EStatOption_fromKeys(c("NUM","MINI","MAXI","MEAN","STDV"))
# The 3D grid is defined on [0,1]^3
# 2D limits of the 3D grid
limits <- list(XP = 1.0*c(0, 1, 1, 0, 0),
YP = 1.0*c(0, 0, 1, 1, 0))
p_lim = PolyElem(limits$XP, limits$YP)
pol_lim = Polygons()
err = pol_lim$addPolyElem(p_lim)
flag.rotation = TRUE
# ----------------------------------------------
# ----------------------------------------------
if(flag.rotation) {
# 3D grid
nx = c(10, 13, 7)
dx = 1/nx
x0 = dx/2
# 2D grid
nx_2d = c(256, 256)
dx_2d = sqrt(2.0) / nx_2d
x0_2d = c(1/2, -1/2)
angles_2d = c(45, 0) # in degrees
} else { # no rotation
# 3D grid
nx = c(10, 10, 10)
dx = 1/nx
x0 = dx/2
# 2D grid
nx_2d = nx[1:2]
dx_2d = dx[1:2]
x0_2d = dx_2d/2
angles_2d = c(0, 0) # in degrees
}
grid = DbGrid_create(nx = nx, dx = dx, x0 = x0)
surfaces = DbGrid_create(nx = nx_2d, dx = dx_2d, x0 = x0_2d, angles = angles_2d)
# plots
p = ggDefaultGeographic() +
plot.grid(grid, nameRaster = "rank", useSel = TRUE, flagLegendRaster = FALSE) +
plot.polygon(poly = pol_lim, color = "orange", fill = NA) +
plot.decoration(xlab = "Easting", ylab = "Northing", title = paste0("3D grid and limits"))
ggPrint(p)
p = ggDefaultGeographic() +
plot.grid(surfaces, nameRaster = "rank", useSel = TRUE, flagLegendRaster = FALSE) +
plot.polygon(poly = pol_lim, color = "orange", fill = NA) +
plot.decoration(xlab = "Easting", ylab = "Northing", title = paste0("2D grid and limits"))
ggPrint(p)
# ----------------------
# selection of some grid cells
# ----------------------
sel = (grid["x1"] >= 0.20)&(grid["x1"] <= 0.70) &
(grid["x3"] >= 0.10)&(grid["x3"] <= 0.70)
sel = as.numeric(sel)
err = grid$setColumn(tab = sel, name = "sel")
err = grid$setLocator(name = "sel", ELoc_SEL(), cleanSameLocator = TRUE)
# ----------------------
# plot of a slice
# ----------------------
var_nm = "rank"
posx = 1; xlab = "Ox"
posy = 3; ylab = "Oz"
k = 3
corner = rep(k - 1, 3);
corner[posx] = 0;
corner[posy] = 0
slice = DbGrid_create(nx = c(nx[posx], nx[posy]), dx = c(dx[posx], dx[posy]), x0 = c(x0[posx], x0[posy]))
val = grid$getOneSlice(name = var_nm, posx = posx - 1, posy = posy - 1 , corner = c(0,0,k-1),
useSel = TRUE)
err = slice$setColumn(tab = val, name = paste0("K = ", k))
p = ggDefaultGeographic() +
plot.grid(slice, nameRaster = paste0("K = ", k), useSel = TRUE, legendNameRaster = var_nm,
flagLegendRaster = TRUE) +
plot.polygon(poly = pol_lim, color = "orange", fill = NA) +
plot.decoration(xlab = xlab, ylab = ylab,
title = paste0("Slice K = ", k))
ggPrint(p)
# -----------------------------------
# simulation of the surfaces
# -----------------------------------
N = 3
h_mean = c(0.5, 0.25, 0.25)
nbsim = c(3, 4, 3)
# N = 2
# h_mean = c(0.75, 0.25)
# nbsim = c(3, 4)
model = Model_createFromParam(ECov_GAUSSIAN(), range=0.5, sill=1.0)
for (i in 1:N) {
err = simtub(dbin = NULL, dbout = surfaces, model = model, nbsimu = nbsim[i],
namconv = NamingConvention(paste0("Y_", i)))
}
# conversion into uniform thickness
for (i in 1:N) {
val = matrix(surfaces$getColumns(names = paste0("Y_", i , ".", 1:nbsim[i]),
useSel = FALSE),
nrow = surfaces$getSampleNumber(useSel = FALSE), ncol = nbsim[i])
val = h_mean[i] * pnorm(val)
for (k in 1:nbsim[i]) {
err = surfaces$setColumn(tab = val[, k], name = paste0("Z_", i , ".", k),
useSel = FALSE)
}
}
# plot of a variable
var_nm = "Z_1.3"
p = ggDefaultGeographic() +
plot.grid(surfaces, nameRaster = var_nm, useSel = TRUE, legendNameRaster = var_nm,
flagLegendRaster = TRUE) +
plot.polygon(poly = pol_lim, color = "orange", fill = NA) +
plot.decoration(xlab = "Easting", ylab = "Northing",
title = paste0("2D Surface: variable = ", var_nm))
ggPrint(p)