Stochastic Partial Derivative Equations¶
In this tutorial, we show how to use the API SPDE
In [1]:
import gstlearn as gl
import gstlearn.plot as gp
import gstlearn.document as gdoc
import numpy as np
import matplotlib.pyplot as plt
from sksparse.cholmod import cholesky
import scipy as sc
from scipy.sparse import *
from scipy.sparse.linalg import *
import numpy as np
gdoc.setNoScroll()
Parameters¶
In [2]:
# Data
np.random.seed(123)
ndat = 1000
# Model
rangev = 0.2
sill = 1.
nugget = 0.1
# Grid
nx = [50,50]
dx = [0.02,0.02]
x0 = [0,0]
#Grid meshing
nxm = [75,75]
dxm = [0.02,0.02]
x0m = [-0.25,-0.25]
dbfmt = gl.DbStringFormat.createFromFlags(flag_stats=True, names=["spde*"])
Grid and Meshing¶
In [3]:
grid = gl.DbGrid.create(nx,dx,x0)
gridExt = gl.DbGrid.create(nxm,dxm,x0m)
mesh = gl.MeshETurbo(gridExt)
Model¶
In [4]:
model = gl.Model.createFromParam(gl.ECov.MATERN,param=1,range=rangev,sill=sill)
model.addCovFromParam(gl.ECov.NUGGET,sill=nugget)
Data¶
In [5]:
dat = gl.Db.create()
dat["x"] = np.random.uniform(size=ndat)
dat["y"] = np.random.uniform(size=ndat)
dat.setLocators(["x","y"],gl.ELoc.X)
SPDE non-conditional simulation¶
Grid query¶
In [6]:
spde = gl.SPDE(model,grid,None,gl.ESPDECalcMode.SIMUNONCOND)
gl.law_set_random_seed(131351)
iuid = spde.compute(grid)
grid.display(dbfmt)
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 4 Total number of samples = 2500 Grid characteristics: --------------------- Origin : 0.000 0.000 Mesh : 0.020 0.020 Number : 50 50 Data Base Statistics -------------------- 4 - Name spde - Locator z1 Nb of data = 2500 Nb of active values = 2500 Minimum value = -3.342 Maximum value = 3.300 Mean value = -0.121 Standard Deviation = 1.007 Variance = 1.014 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = spde - Locator = z1
In [7]:
ax = grid.plot()
ax.decoration(title="Non Conditional Simulation")
Data query¶
In [8]:
gl.law_set_random_seed(131351)
iuid = spde.compute(dat)
dat.display(dbfmt)
Data Base Characteristics ========================= Data Base Summary ----------------- File is organized as a set of isolated points Space dimension = 2 Number of Columns = 3 Total number of samples = 1000 Data Base Statistics -------------------- 3 - Name spde - Locator z1 Nb of data = 1000 Nb of active values = 1000 Minimum value = -2.993 Maximum value = 2.428 Mean value = -0.157 Standard Deviation = 1.014 Variance = 1.028 Variables --------- Column = 0 - Name = x - Locator = x1 Column = 1 - Name = y - Locator = x2 Column = 2 - Name = spde - Locator = z1
Kriging¶
In [9]:
spdeRes = gl.SPDE(model,grid,dat,gl.ESPDECalcMode.KRIGING,mesh,1)
iuid = spdeRes.compute(grid)
grid.display(dbfmt)
Data Base Grid Characteristics ============================== Data Base Summary ----------------- File is organized as a regular grid Space dimension = 2 Number of Columns = 5 Total number of samples = 2500 Grid characteristics: --------------------- Origin : 0.000 0.000 Mesh : 0.020 0.020 Number : 50 50 Data Base Statistics -------------------- 4 - Name spde - Locator NA Nb of data = 2500 Nb of active values = 2500 Minimum value = -3.342 Maximum value = 3.300 Mean value = -0.121 Standard Deviation = 1.007 Variance = 1.014 5 - Name spde.spde.estim - Locator z1 Nb of data = 2500 Nb of active values = 2500 Minimum value = -2.554 Maximum value = 2.026 Mean value = -0.137 Standard Deviation = 0.885 Variance = 0.784 Variables --------- Column = 0 - Name = rank - Locator = NA Column = 1 - Name = x1 - Locator = x1 Column = 2 - Name = x2 - Locator = x2 Column = 3 - Name = spde - Locator = NA Column = 4 - Name = spde.spde.estim - Locator = z1
In [10]:
ax = grid.plot()
ax.decoration(title="Estimation")
Manually¶
Projection Matrix: mesh to grid¶
In [11]:
Pglg = gl.ProjMatrix(grid,mesh)
Aprojg = Pglg.toTL()
Simulation¶
In [12]:
Q = spdeRes.getPrecisionOpCs().getQ().toTL()
cholQ = cholesky(Q)
In [13]:
u = np.random.normal(size = Q.shape[0])
gridExt["simuManual"] = cholQ.apply_Pt(cholQ.solve_Lt(1./np.sqrt(cholQ.D())*u))
gridExt.addSelection((gridExt["x1"]>0) & (gridExt["x2"]>0) & (gridExt["x1"]<1.) & (gridExt["x2"]<1.))
ax = gridExt.plot("simuManual",useSel=False)
print(f"Variance = {round(np.var(gridExt['simuManual'][np.where(gridExt['NewSel']==1)]),4)}")
Variance = 1.1733
Kriging¶
In [14]:
Pgl = gl.ProjMatrix(dat,mesh)
Aproj = Pgl.toTL()
Qop = Q + 1/nugget * Aproj.T @ Aproj
cholQop = cholesky(Qop)
kriging = cholQop.solve_A(Aproj.T @ (dat["spde*"]/nugget))
In [15]:
grid["manually"] = Aprojg @ kriging
In [16]:
ax = plt.scatter(grid["manually"],grid["*estim"],s=1)
p = plt.plot([-3,3],[-3,3],c="r")
Likelihood¶
Manually with Cholesky vs. matrix-free approach with SPDE api.
In [17]:
def solveMat(cholQop,x):
return cholQop.solve_A(x)
def invSigma(sigma2,Aproj,cholQop,x):
return 1./sigma2 * (x - 1./sigma2 * Aproj @ solveMat(cholQop, Aproj.T @ x))
def detQ(cholQ):
return cholQ.logdet()
x = dat["spde"]
ones = np.ones_like(x)
invSigmaOnes = invSigma(nugget,Aproj,cholQop,ones)
mu = np.sum(x * invSigmaOnes)/np.sum( ones * invSigmaOnes)
quad = np.sum((x-mu)*invSigma(nugget,Aproj,cholQop,x-mu))
logdet = len(x) * np.log(nugget) - detQ(cholQ) + detQ(cholQop)
print(f"logdet_chol = {round(logdet,4)}")
print(f"quad_chol = {round(quad,4)}")
print(f"like_chol = {round(-0.5 * (quad + logdet + len(x) * np.log(2. * np.pi)),4)}")
logdet_chol = -1261.3613 quad_chol = 1118.4871 like_chol = -847.5015
In [18]:
a_quad = spdeRes.computeQuad()
print(f"-> Relative difference quadratic = {round(100*(a_quad-quad)/quad,2)}%")
-> Relative difference quadratic = 0.01%
In [19]:
pcm = spdeRes.getPrecisionKrig()
a_op = detQ(cholQop)
b_op = pcm.computeLogDetOp(1)
print(f"log_det_op_chol = {round(a_op,4)}")
print(f"log_det_op_api = {round(b_op,4)}")
print(f"-> Relative difference = {round(100*(b_op-a_op)/a_op, 2)}%")
log_det_op_chol = 12296.9389 log_det_op_api = 12296.9389 -> Relative difference = 0.0%
In [20]:
a_one = detQ(cholQ)
b_one = pcm.computeLogDetQ(10)
print(f"log_det_Q_chol = {round(a_one,4)}")
print(f"log_det_Q_api = {round(b_one,4)}")
print(f"-> Relative difference = {round(100*(b_one-a_one)/a_one,2)}%")
log_det_Q_chol = 11255.7151 log_det_Q_api = 11255.7151 -> Relative difference = 0.0%
In [21]:
a = -0.5 * (quad + logdet + len(x) * np.log(2. * np.pi))
print(f"likelihood api = {round(a,4)}")
model.setDriftIRF()
spdeLL = gl.SPDE(model,grid,dat,gl.ESPDECalcMode.KRIGING,mesh,1)
b = spdeLL.computeLogLikelihood(100)
print(f"likelihood_chol = {round(b,4)}")
print(f"-> Relative Difference = {round(100*(b-a)/a,2)}%")
likelihood api = -847.5015
likelihood_chol = -847.5015 -> Relative Difference = -0.0%
In [22]:
b2 = gl.logLikelihoodSPDE(dat,grid,model,mesh,1)
print(f"likelihood by API {round(b2,4)}")
likelihood by API -847.5015