1.2.2
CCC
 
MatrixSquareSymmetric.cpp File Reference

Macros

#define TRI(i)   (((i) * ((i) + 1)) / 2)
 
#define SQ(i, j, neq)   ((j) * neq + (i))
 
#define AT(i, j)   at[TRI(j)+(i)] /* for j >= i */
 
#define AL(i, j)   al[SQ(i,j,neq)-TRI(j)] /* for i >= j */
 
#define BS(i, j)   b[SQ(i,j,neq)]
 
#define XS(i, j)   x[SQ(i,j,neq)]
 
#define AS(i, j)   a[SQ(i,j,neq)]
 
#define TL(i, j)   tl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
 
#define _TL(i, j)   _tl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
 
#define _XL(i, j)   _xl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
 
#define HA(i, j)   ha[SQ(i,j,neq)]
 

Macro Definition Documentation

#define _TL (   i,
 
)    _tl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
#define _XL (   i,
 
)    _xl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
#define AL (   i,
 
)    al[SQ(i,j,neq)-TRI(j)] /* for i >= j */
#define AS (   i,
 
)    a[SQ(i,j,neq)]
#define AT (   i,
 
)    at[TRI(j)+(i)] /* for j >= i */
#define BS (   i,
 
)    b[SQ(i,j,neq)]
#define HA (   i,
 
)    ha[SQ(i,j,neq)]
#define SQ (   i,
  j,
  neq 
)    ((j) * neq + (i))
#define TL (   i,
 
)    tl[SQ(i,j,neq)-TRI(j)] /* for i >= j */
#define TRI (   i)    (((i) * ((i) + 1)) / 2)
#define XS (   i,
 
)    x[SQ(i,j,neq)]