Macros | |
#define | DBL_MAXIMUM 1.e30 |
#define | DATA(iech, ivar) (data[(iech) * nvar + (ivar)]) |
#define | DATA1(iech, ivar) (data1[(iech) * nvar + (ivar)]) |
#define | DATA2(iech, ivar) (data2[(iech) * nvar + (ivar)]) |
#define | CDATA(icl, ivar) (cdata[(icl) * nvar + (ivar)]) |
#define | DISTMATRIX(i, j) (distmatrix[(i) * nech + (j)]) |
Functions | |
double * | kclusters (double *data, int nvar, int nech, int nclusters, int npass, int mode, int verbose) |
int * | kmedoids (double *data, int nvar, int nech, int nclusters, int npass, int verbose) |
#define CDATA | ( | icl, | |
ivar | |||
) | (cdata[(icl) * nvar + (ivar)]) |
#define DATA | ( | iech, | |
ivar | |||
) | (data[(iech) * nvar + (ivar)]) |
#define DATA1 | ( | iech, | |
ivar | |||
) | (data1[(iech) * nvar + (ivar)]) |
#define DATA2 | ( | iech, | |
ivar | |||
) | (data2[(iech) * nvar + (ivar)]) |
#define DBL_MAXIMUM 1.e30 |
#define DISTMATRIX | ( | i, | |
j | |||
) | (distmatrix[(i) * nech + (j)]) |
double* kclusters | ( | double * | data, |
int | nvar, | ||
int | nech, | ||
int | nclusters, | ||
int | npass, | ||
int | mode, | ||
int | verbose | ||
) |
Perform k-means clustering on a given set of variables. The number of clusters is given in input
[in] | data | Array of values |
[in] | nvar | Number of samples |
[in] | nech | Number of variables |
[in] | nclusters | Number if clusters |
[in] | npass | Number of times clustering is performed |
[in] | mode | 0 for k-means and 1 for k-medians |
[in] | verbose | Verbose option |
int* kmedoids | ( | double * | data, |
int | nvar, | ||
int | nech, | ||
int | nclusters, | ||
int | npass, | ||
int | verbose | ||
) |
Perform k-medoids clustering on a given set of variables. The number of clusters is given in input
[in] | data | Array of values |
[in] | nvar | Number of samples |
[in] | nech | Number of variables |
[in] | nclusters | Number if clusters |
[in] | npass | Number of times clustering is performed |
[in] | verbose | Verbose option |