Perform the Algebra for Kriging and CoKriging.
It requires the definition of:
- the vector of Data values Z (possibly multivariate and heterotopic)
- the Covariance matrix at data points Sigma
- the Drift matrix at data points X (UK if defined, SK otherwise)
- the Covariance matrix at target Sigma00 (only for calculating variance)
- the Drift coefficients Beta (for SK)
Note: When using SK:
- the vector Z must be centered by the drift beforehand
- the vector beta corresponds to the vector of Means.
|
| | KrigingCalcul (bool flagDual=false, const VectorDouble *Z=nullptr, const MatrixSquareSymmetric *Sigma=nullptr, const MatrixRectangular *X=nullptr, const MatrixSquareSymmetric *Sigma00=nullptr, const VectorDouble *Means=nullptr) |
| |
| | KrigingCalcul (const KrigingCalcul &r)=delete |
| |
| KrigingCalcul & | operator= (const KrigingCalcul &r)=delete |
| |
| virtual | ~KrigingCalcul () |
| |
| int | setData (const VectorDouble *Z=nullptr, const VectorDouble *Means=nullptr) |
| | Modify the Data Values (and Means) More...
|
| |
| int | setLHS (const MatrixSquareSymmetric *Sigma=nullptr, const MatrixRectangular *X=nullptr) |
| | Modify the elements linked to the LHS. More...
|
| |
| int | setRHS (const MatrixRectangular *Sigma0=nullptr, const MatrixRectangular *X0=nullptr) |
| |
| int | setVar (const MatrixSquareSymmetric *Sigma00=nullptr) |
| |
| int | setColCokUnique (const VectorDouble *Zp=nullptr, const VectorInt *rankColCok=nullptr) |
| | Define the inforlation for Collocated Option. More...
|
| |
| int | setBayes (const VectorDouble *PriorMean=nullptr, const MatrixSquareSymmetric *PriorCov=nullptr) |
| |
| int | setXvalidUnique (const VectorInt *rankXvalidEqs=nullptr, const VectorInt *rankXvalidVars=nullptr) |
| | Define the elements of the input Db to be cross-validated. More...
|
| |
| void | printStatus () const |
| |
| VectorDouble | getEstimation () |
| |
| VectorDouble | getStdv () |
| |
| VectorDouble | getVarianceZstar () |
| |
| VectorDouble | getPostMean () |
| |
| const MatrixSquareSymmetric * | getStdvMat () |
| |
| const MatrixSquareSymmetric * | getVarianceZstarMat () |
| |
| const MatrixSquareSymmetric * | getPostCov () |
| |
| const MatrixRectangular * | getLambda () |
| |
| const MatrixRectangular * | getLambda0 () |
| |
| const MatrixRectangular * | getMu () |
| |
| const MatrixRectangular * | getX0 () |
| |
| const MatrixRectangular * | getX0p () |
| |
| const MatrixRectangular * | getY0 () |
| |
| const MatrixRectangular * | getY0p () |
| |
| const MatrixRectangular * | getSigma0 () |
| |
| const MatrixRectangular * | getSigma0p () |
| |
| void | resetLinkedToZ () |
| |
| void | resetLinkedToLHS () |
| |
| void | resetLinkedToRHS () |
| |
| void | resetLinkedtoVar0 () |
| |
| void | resetLinkedToBayes () |
| |
| void | resetLinkedToColCok () |
| |
| void | resetLinkedToXvalid () |
| |