Class which, starting from an experimental variogram, enables fitting the various parameters of a Covariance part of a Model. More...
#include <ModelOptimVario.hpp>
Class which, starting from an experimental variogram, enables fitting the various parameters of a Covariance part of a Model.
Public Member Functions | |
ModelOptimVario (ModelGeneric *model, const Constraints *constraints=nullptr, const ModelOptimParam &mop=ModelOptimParam()) | |
ModelOptimVario (const ModelOptimVario &m) | |
ModelOptimVario & | operator= (const ModelOptimVario &m) |
virtual | ~ModelOptimVario () |
double | computeCost (bool verbose=false) override |
void | evalGrad (vect res) override |
![]() | |
AModelOptim (ModelGeneric *model=nullptr, bool verbose=false) | |
void | setEnvironment (const MatrixSymmetric &vars, double href) |
AModelOptim & | operator= (const AModelOptim &r) |
void | setAuthorizedAnalyticalGradients (bool authorized) |
bool | getAuthorizedAnalyticalGradients () const |
virtual | ~AModelOptim () |
void | setGradients (std::vector< std::function< double(const std::vector< double > &)> > &gradients) |
void | setVerbose (bool verbose=false, bool trace=false) |
double | eval (const std::vector< double > &x) |
void | run () |
void | resetIter () |
Static Public Member Functions | |
static ModelOptimVario * | createForOptim (ModelGeneric *model, const Vario *vario, const Constraints *constraints=nullptr, const ModelOptimParam &mop=ModelOptimParam()) |
gstlrn::ModelOptimVario::ModelOptimVario | ( | ModelGeneric * | model, |
const Constraints * | constraints = nullptr , |
||
const ModelOptimParam & | mop = ModelOptimParam() |
||
) |
gstlrn::ModelOptimVario::ModelOptimVario | ( | const ModelOptimVario & | m | ) |
|
virtual |
|
overridevirtual |
Implements gstlrn::AModelOptim.
|
static |
|
overridevirtual |
Reimplemented from gstlrn::AModelOptim.
ModelOptimVario & gstlrn::ModelOptimVario::operator= | ( | const ModelOptimVario & | m | ) |